Medical devices are becoming more and more significant in our daily life. For implantable medical devices, good biocompatibility is required for further use in vivo. Thus, surface modification of medical devices is really important, which gives a wide application scene for a silane coupling agent. The silane coupling agent is able to form a durable bond between organic and inorganic materials. The dehydration process provides linking sites to achieve condensation of two hydroxyl groups. The forming covalent bond brings excellent mechanical properties among different surfaces. Indeed, the silane coupling agent is a popular component in surface modification. Metals, proteins, and hydrogels are using silane coupling agent to link parts commonly. The mild reaction environment also brings advantages for the spread of the silane coupling agent. In this review, we summarize two main methods of using the silane coupling agent. One is acting as a crosslinker mixed in the whole system, and the other is to provide a bridge between different surfaces. Moreover, we introduce their applications in biomedical devices.

1.
T.
Qazi
et al,
Biomaterials
53
,
502
(
2015
).
2.
L.
Huyer
et al,
Biomed. Mater.
10
,
034004
(
2015
).
3.
A.
Jakus
,
A.
Rutz
, and
R.
Shah
,
Biomed. Mater.
11
,
014102
(
2016
).
4.
W.
Teng
et al,
Biomaterials
35
,
8916
(
2014
).
5.
6.
Q.
Lin
,
J.
Yan
,
F.
Qiu
,
X.
Song
,
G.
Fu
, and
J.
Ji
,
J. Biomed. Mater. Res. Part A
96A
,
132
(
2011
).
7.
H.
Chang
et al,
Biomaterials
34
,
3345
(
2013
).
8.
B.
Joos
,
H.
Kuster
, and
R.
Cone
,
Anal. Biochem.
247
,
96
(
1997
).
9.
R.
Shircliff
et al,
Langmuir
29
,
4057
(
2013
).
10.
N.
Aissaoui
et al,
Langmuir
28
,
656
(
2012
).
11.
P.
Edwin
,
J. Adhension
2
,
184
(
1970
).
12.
Q.
Liu
,
G.
Nian
,
C.
Yang
,
S.
Qu
, and
Z.
Suo
,
Nat. Commun.
9
,
846
(
2018
).
13.
K.
Tian
,
Z.
Suo
, and
J. J.
Vlassak
,
ACS Appl. Mater. Interfaces
12
,
31002
(
2020
).
14.
X.
Mo
,
W.-C.
Huang
,
S.
Sun
,
Z.
Chi
,
Y.
Ding
, and
X.
Mao
,
Macromol. Mater. Eng.
307
,
2200060
(
2022
).
15.
V. M.
Vijayan
,
B. S.
Tucker
,
P. T. J.
Hwang
,
P. S.
Bobba
,
H.-W.
Jun
,
S. A.
Catledge
,
Y. K.
Vohra
, and
V.
Thomas
,
J. Mater. Chem. B
8
,
2814
(
2020
).
16.
Q.
Li
and
Z.
Guo
,
J. Colloid Interface Sci.
536
,
507
(
2019
).
17.
G.
Réthoré
,
C.
Boyer
,
K.
Kouadio
,
A.
Toure
,
J.
Lesoeur
,
B.
Halgand
,
F.
Jordana
,
J.
Guicheux
, and
P.
Weiss
,
Polymers
12
,
2823
(
2020
).
18.
S.
Paknia
,
Z.
Izadi
,
M.
Moosaipour
,
S.
Moradi
,
B.
Khalilzadeh
,
M.
Jaymand
, and
H.
Samadian
,
J. Mol. Liq.
362
,
119701
(
2022
).
19.
K.
Wang
,
L.
Trichet
,
C.
Rieu
,
C.
Peccate
,
G.
Pembouong
,
L.
Bouteiller
, and
T.
Coradin
,
Biomacromolecules
20
,
3684
(
2019
).
20.
A.
Farooq
et al,
J. Drug Delivery Sci. Technol.
67
,
102969
(
2022
).
21.
Z.
Han
et al,
ACS Appl. Mater. Interfaces
12
,
12010
(
2020
).
22.
H.-Y.
Lee
,
H.-E.
Kim
, and
S.-H.
Jeong
,
Colloids Surf. B
174
,
308
(
2019
).
23.
N.-P.-D.
Tran
and
M.-C.
Yang
,
Polymers
11
,
944
(
2019
).
24.
W.
Kang
,
J.
Liang
,
T.
Liu
,
H.
Long
,
L.
Huang
,
Q.
Shi
,
J.
Zhang
,
S.
Deng
, and
S.
Tan
,
Int. J. Biol. Macromol.
200
,
99
(
2022
).
25.
Y.
Sheng
et al,
Appl. Surf. Sci.
527
,
146914
(
2020
).
26.
B.
Li
,
J.
Niu
,
H.
Liu
, and
G.
Li
,
Appl. Phys. A
124
,
825
(
2018
).
27.
L.
Huang
,
K.
Su
,
Y.-F.
Zheng
,
K. W.-K.
Yeung
, and
X.-M.
Liu
,
Rare Met.
38
,
588
(
2019
).
28.
A.
Bahatibieke
,
H.
Qin
,
T.
Cui
,
Y.
Liu
, and
Z.
Wang
,
Mater. Sci. Eng. C
120
,
111771
(
2021
).
29.
T.
Wang
,
S.
Jia
,
Y.
Xu
,
Y.
Dong
,
Y.
Guo
,
Z.
Huang
,
G.
Li
, and
J.
Lian
,
Prog. Org. Coat.
163
,
106653
(
2022
).
30.
T.
Liu
,
S.
Rui
, and
S.
Li
,
Coatings
11
,
515
(
2021
).
31.
M.
Li
et al,
Appl. Surf. Sci.
600
,
154143
(
2022
).
32.
C.
Johnbosco
,
S.
Zschoche
,
M.
Nitschke
,
D.
Hahn
,
C.
Werner
, and
M. F.
Maitz
,
Mater. Sci. Eng. C
128
,
112268
(
2021
).
33.
K.
Xue
,
L.-X.
Liang
,
S.-C.
Cheng
,
H.-P.
Liu
,
L.-Y.
Cui
,
R.-C.
Zeng
,
S.-Q.
Li
, and
Z.-L.
Wang
,
Prog. Org. Coat.
158
,
106357
(
2021
).
34.
Q.
Cheng
,
Y.-Y.
Peng
,
A. B.
Asha
,
L.
Zhang
,
J.
Li
,
Z.
Shi
,
Z.
Cui
, and
R.
Narain
,
Biomater. Sci.
10
,
1787
(
2022
).
35.
M.
Xiao
,
J.
Jasensky
,
J.
Gerszberg
,
J.
Chen
,
J.
Tian
,
T.
Lin
,
T.
Lu
,
J.
Lahann
, and
Z.
Chen
,
Langmuir
34
,
12889
(
2018
).
36.
J.
Shen
et al,
Acta Biomater.
114
,
421
(
2020
).
37.
D.
Chen
,
Y.
Li
,
H.
He
,
W.
Li
,
R.
Zeng
, and
X.
Wang
,
Surf. Coat. Technol.
426
,
127773
(
2021
).
38.
Y.
Nie
et al,
Surf. Coat. Technol.
410
,
126966
(
2021
).
39.
M.
Kim
,
R. T. H.
Linstadt
,
K.
Ahn Ando
, and
J.
Ahn
,
Langmuir
38
,
2162
(
2022
).
40.
Y.
Li
,
R.
Chen
,
F.
Wang
,
X.
Cai
, and
Y.
Wang
,
RSC Adv.
12
,
6918
(
2022
).
41.
M. K.
Shave
et al,
Soft Matter
18
,
6618
(
2022
).
42.
S.
Agarwal
,
M.-N.
Labour
,
D.
Hoey
,
B.
Duffy
,
J.
Curtin
, and
S.
Jaiswal
,
J. Mater. Sci. Mater. Med.
29
,
144
(
2018
).
43.
A. M.
Pandele
,
P.
Neacsu
,
A.
Cimpean
,
A. I.
Staras
,
F.
Miculescu
,
A.
Iordache
,
S. I.
Voicu
,
V. K.
Thakur
, and
O. D.
Toader
,
Appl. Surf. Sci.
438
,
2
(
2018
).
44.
A.
Nikbakht
,
C.
Dehghanian
, and
R.
Parichehr
,
RSC Adv.
11
,
26127
(
2021
).
45.
K. S.
Durán
,
N.
Hernández
,
L. M.
Rueda
,
C. A.
Hernández-Barrios
,
A. E.
Coy
, and
F.
Viejo
,
J. Magnesium Alloys
9
,
2097
(
2021
).
46.
K.
Li
,
Y.
Xue
,
J.
Zhou
,
J.
Han
,
L.
Zhang
, and
Y.
Han
,
J. Mater. Chem. B
8
,
691
(
2020
).
47.
S.
Staehlke
,
J.
Lehnfeld
,
A.
Schneider
,
J. B.
Nebe
, and
R.
Müller
,
Mater. Sci. Eng. C
101
,
190
(
2019
).
48.
A. F.
Magueta
,
M. H. V.
Fernandes
,
M. J.
Hortigüela
,
G.
Otero-Irurueta
, and
P. M.
Vilarinho
,
Prog. Org. Coat.
157
,
106289
(
2021
).
49.
N.
He
,
J.
Li
,
W.
Li
,
X.
Lin
,
Q.
Fu
,
X.
Peng
,
W.
Jin
,
Z.
Yu
, and
P. K.
Chu
,
Colloids Surf. A
661
,
130947
(
2023
).
50.
M.
Babaei
,
S.
Bonakdar
, and
B.
Nasernejad
,
Sci. Rep.
12
,
12837
(
2022
).
51.
M.
Korogiannaki
,
L.
Jones
, and
H.
Sheardown
,
Langmuir
35
,
950
(
2019
).
52.
P.
Hu
,
R.
Xie
,
Q.
Xie
,
C.
Ma
, and
G.
Zhang
,
Chem. Eng. J.
449
,
137875
(
2022
).
53.
A.-S.
Mertgen
,
A. G.
Guex
,
S.
Tosatti
,
G.
Fortunato
,
R. M.
Rossi
,
M.
Rottmar
,
K.
Maniura-Weber
, and
S.
Zürcher
,
Appl. Surf. Sci.
584
,
152525
(
2022
).
54.
T.
Masuda
,
Y.
Hiraguchi
,
K.
Kushiro
,
Y.
Araki
,
T.
Wada
, and
M.
Takai
,
Eur. Polym. J.
135
,
109885
(
2020
).
55.
J.
Ma
,
W.
Lin
,
L.
Xu
,
S.
Liu
,
W.
Xue
, and
S.
Chen
,
Langmuir
36
,
3251
(
2020
).
56.
Z.
Lu
,
E. A. Q.
Mondarte
,
K.
Suthiwanich
,
T.
Hayashi
,
T.
Masuda
,
N.
Isu
, and
M.
Takai
,
ACS Appl. Bio Mater.
3
,
1079
(
2020
).
57.
Y.
Kozuka
,
Z.
Lu
,
T.
Masuda
,
S.
Hara
,
T.
Kasama
,
R.
Miyake
,
N.
Isu
, and
M.
Takai
,
J. Mater. Chem. B
9
,
4480
(
2021
).
58.
Q.
Qiu
,
C.
Yang
,
Y.
Wang
,
C. A.
Alexander
,
G.
Yi
,
Y.
Zhang
,
X.
Qin
, and
Y. Y.
Yang
,
Biomaterials
284
,
121470
(
2022
).
59.
H.
Li
,
A.
Granados
,
E.
Fernández
,
R.
Pleixats
, and
A.
Vallribera
,
ACS Appl. Mater. Interfaces
12
,
25658
(
2020
).
60.
A.
Shakeri
,
N. A.
Jarad
,
J.
Terryberry
,
S.
Khan
,
A.
Leung
,
S.
Chen
, and
T. F.
Didar
,
Small
16
,
2003844
(
2020
).
61.
D. F.
Williams
,
Definitions of biomaterials for the twenty-first century: proceedings of a Consensus Conference held in Chengdu, People's Republic of China, June 11th and 12th 2018, organized under the auspices of the International Union of Societies for Biomaterials Science & Engineering; hosted and supported by Sichuan University, Chengdu and the Chinese Society for Biomaterials, China
, Materials Today, edited by X. Zhang (
Elsevier
,
2019
).
You do not currently have access to this content.