Pathogenic bacteria represent a severe threat to global public health, particularly with the growing rate of antibiotic resistance, and, therefore, indicate a critical need for developing efficient sensing platforms. Liposome-based sensors are collocating interest due to their intrinsic fusogenic ability to fuse with the outer membrane of bacteria. However, the lack of a conducting property limits their applicability for developing biosensing platforms. In this study, we report conjugation of liposomes with reduced graphene oxide (rGO) for fabricating a rapid and sensitive biosensor for electrochemical detection of Escherichia coli (E. coli). The large surface area of rGO facilitated binding of liposomes with their surface, and the intrinsic electrical and biocompatible properties assisted electrochemical sensing of bacteria. The electrochemical response of the liposome and the rGO-liposome coated electrode shows nonconducting and conducting characteristics, respectively. A significant change in the peak current of differential pulse voltammetry with the gradual variation of bacterial density in the electrolyte was observed for the glassy carbon electrode rGO-liposome (GCE-L-rGO) surface only. The detection sensitivity of GCE-L-rGO sensors was ∼26 μA/106 cells per ml of electrolyte for varying cell densities from 3 × 103 to 3 × 104 cells/ml. The proposed sensing technique can serve as an alternative to conventional methodologies for rapid and in situ detection of bacterial load in different samples, laying the foundation for new applications in clinical diagnostics.

1.
M.
Vouga
and
G.
Greub
,
Clin. Microbiol. Infect.
22
,
12
(
2016
).
2.
D.
van Duin
and
D. L.
Infect
,
Infect. Dis. Clin. N. Am.
34
,
709
(
2020
).
3.
J. D. O.
Mota
et al,
Food Control
130
,
108283
(
2021
).
4.
A. A.
Ali
,
A. B.
Altemimi
,
N.
Alhelfi
, and
S. A.
Ibrahim
,
Biosensors
10
,
58
(
2020
).
5.
A.
Rompré
,
P.
Servais
,
J.
Baudart
,
M. R.
de-Roubin
, and
P.
Laurent
,
J. Microbiol. Methods
49
,
31
(
2002
).
6.
R.
Gangwar
,
D.
Ray
,
K. T.
Rao
,
S.
Khatun
,
C.
Subrahmanyam
,
A. K.
Rengan
, and
S. R. K.
Vanjari
,
ACS Omega
7
,
21025
(
2022
).
7.
L.
Ngashangva
,
B. A.
Hemdan
,
M. A.
El-Liethy
,
V.
Bachu
,
S.
Minteer
, and
P.
Goswami
,
Micromachines
13
,
1083
(
2022
).
8.
R. C.
Nnachi
,
N.
Sui
,
B.
Ke
,
Z.
Luo
,
N.
Bhalla
,
D.
He
, and
Z.
Yang
,
Environ. Int.
166
,
107357
(
2022
).
9.
S.
Roy
,
F.
Arshad
,
S.
Eissa
,
M.
Safavieh
,
S. G.
Alattas
,
M. U.
Ahmed
, and
M.
Zourob
,
Sens. Diagn.
1
,
87
(
2022
).
10.
Z.
Altintas
,
M.
Akgun
,
G.
Kokturk
, and
Y.
Uludag
,
Biosens. Bioelectron.
100
,
541
(
2018
).
11.
S.
Mahari
and
S.
Gandhi
,
Biosensors
12
,
365
(
2022
).
12.
T.
Lia
,
F.
Zhua
,
W.
Guoa
,
H.
Gua
,
J.
Zhaoa
,
M.
Yan
, and
S.
Liu
,
RSC Adv.
7
,
30446
(
2017
).
13.
N.
Duan
,
S.
Wu
,
S.
Dai
,
T.
Miao
,
J.
Chen
, and
Z.
Wang
,
Microchim. Acta
182
,
917
(
2015
).
14.
S.
Mahari
,
A.
Roberts
, and
S.
Gandhi
,
Food Chem.
390
,
133219
(
2022
).
15.
S.
Mahari
and
S.
Gandhi
,
Bioelectrochemistry
144
,
108036
(
2022
).
16.
J. R.
Tan
,
Ferdinandus
,
B.
Xing
, and
C. L. K.
Lee
,
Sens. Actuators B
367
,
132123
(
2022
).
17.
J.
Park
,
S. K.
Ku
,
D.
Seo
,
K.
Hur
,
H.
Jeon
,
D.
Shvartsman
,
H. K.
Seok
,
D. J.
Mooney
, and
K.
Lee
,
Chem. Commun.
52
,
10346
(
2016
).
18.
J.
Li
,
X.
Wang
,
T.
Zhang
,
C.
Wang
,
Z.
Huang
,
X.
Luo
, and
Y.
Deng
,
Asian J. Pharm. Sci.
10
,
81
(
2015
).
19.
M.
Ferreira
,
M.
Ogren
,
J. N. R.
Dias
,
M.
Silva
,
S.
Gil
,
L.
Tavares
,
F.
Aires-da-Silva
,
M. M.
Gaspar
, and
S. I.
Aguiar
,
Molecules
26
,
2047
(
2021
).
20.
D.
Nicolosi
,
M.
Scalia
,
V. M.
Nicolosi
, and
R.
Pignatello
,
Int. J. Antimicrob. Agents
35
,
553
(
2010
).
21.
Z.
Wang
,
Y.
Ma
,
H.
Khalil
,
R.
Wang
,
T.
Lu
,
W.
Zhao
,
Y.
Zhang
,
J.
Chen
, and
T.
Chen
,
Int. J. Nanomedicine
11
,
4025
(
2016
).
22.
C.
Beaulac
,
S.
Clément-Major
,
J.
Hawari
, and
J.
Lagacé
,
Antimicrob. Agents Chemother.
40
,
665
(
1996
).
23.
S.
Sachetelli
,
H.
Khalil
,
T.
Chen
,
C.
Beaulac
,
S.
Sénéchal
, and
J.
Lagacé
,
Biochim. Biophys. Acta-Biomembr.
1463
,
254
(
2000
).
24.
A. C. F.
Ip
,
B.
Liu
,
P. J. J.
Huang
, and
J.
Liu
,
Small
9
,
1030
(
2013
).
25.
A.
Akbarzadeh
et al,
Nanoscale Res. Lett.
8
,
102
(
2013
).
26.
R.
Prasad
,
A. S.
Yadav
,
M.
Gorain
,
D. S.
Chauhan
,
G. C.
Kundu
,
R.
Srivastava
, and
K.
Selvaraj
,
ACS Appl. Bio Mater.
2
,
3312
(
2019
).
27.
H.
Imran
,
P. N.
Manikandan
, and
V.
Dharuman
,
Sens. Actuators B
260
,
841
(
2018
).
28.
D.
Melendreza
,
T.
Jowittb
,
M.
Iliuta
,
A. F.
Verrea
,
S.
Goodwinc
, and
A.
Vijayaraghavan
,
Nanoscale
10
,
2555
(
2018
).
29.
K.
Dave
,
K. H.
Park
, and
M.
Dhayal
,
RSC Adv.
5
,
95657
(
2015
).
30.
K.
Dave
and
M.
Dhayal
,
Appl. Surf. Sci.
396
,
978
(
2017
).
31.
L. E.
Palacios
and
T.
Wang
,
J. Am. Oil Chem. Soc.
82
,
571
(
2005
).
32.
C.
Laye
,
D. J.
McClements
, and
J.
Weiss
,
J. Food Sci.
73
,
N7
(
2008
).
33.
D. C.
Marcano
,
D. V.
Kosynkin
,
J. M.
Berlin
,
A.
Sinitskii
,
Z.
Sun
,
A.
Slesarev
,
L. B.
Alemany
,
W.
Lu
, and
J. M.
Tour
,
ACS Nano
4
,
4806
(
2010
).
34.
S.
Stankovich
,
D. A.
Dikin
,
R. D.
Piner
,
K. A.
Kohlhaas
,
A.
Kleinhammes
,
Y.
Jia
,
Y.
Wu
,
S. T.
Nguyen
, and
R. S.
Ruoff
,
Carbon
45
,
1558
(
2007
).
35.
K.
Dave
,
K. H.
Park
, and
M.
Dhayal
,
RSC Adv.
5
,
107348
(
2015
).
36.
E.
Kocisova
and
M.
Prochazka
,
J. Raman Spectrosc.
42
,
1606
(
2011
).
37.
M.
Petaccia
,
C.
Bombelli
,
F. P.
Sterbini
,
M.
Papi
,
L.
Giansanti
,
F.
Bugli
,
M.
Sanguinetti
, and
G.
Mancini
,
Sens. Actuators B
248
,
247
(
2017
).
38.
L.
Mei
,
Q.
Zhang
,
M.
Dua
, and
Z.
Zeng
,
Analyst
145
,
3749
(
2020
).
39.
M.
Xu
,
Y.
Zhu
,
S.
Gao
,
Z.
Zhang
,
Y.
Gu
, and
X.
Liu
,
ACS Appl. Nano Mater.
4
,
12442
(
2021
).
40.
M.
Chen
,
C.
Hou
,
D.
Huo
,
J.
Bao
,
H.
Fa
, and
C.
Shen
,
Biosens. Bioelectron.
85
,
684
(
2016
).
41.
M.
Mihrican
,
S.
Surbhi
,
E.
Arzum
, and
P.
Pagona
,
Electroanalysis
23
,
272
(
2011
).
42.
L.
Zhu
,
L.
Luo
, and
Z.
Wang
,
Biosens. Bioelectron.
35
,
507
(
2012
).
43.
L.
Zhou
et al,
Biosens. Bioelectron.
87
,
701
(
2017
).
44.
Y.-M.
Wu
,
Y.
Cen
,
L.-J.
Huang
,
R.-Q.
Yu
, and
X.
Chu
,
Chem. Commun.
50
,
4759
(
2014
).
45.
G.
Martínez-García
,
L.
Agüí
,
P.
Yáñez-Sedeño
, and
J. M.
Pingarrón
,
Procedia Technol.
27
,
187
(
2017
).
46.
H.-P.
Peng
et al,
Sens. Actuators B
207
,
269
(
2015
).
47.
S.
Pang
,
Y.
Gao
,
Y.
Li
,
S.
Liu
, and
X.
Su
,
Analyst
138
,
2749
(
2013
).
48.
S.
Muniandy
,
S. J.
Teh
,
J. N.
Appaturi
,
K. L.
Thong
,
C. W.
Lai
,
F.
Ibrahim
, and
B. F.
Leo
,
Bioelectrochemistry
127
,
136
(
2019
).
49.
M.
Pourmadadi
,
J. S.
Shayeh
,
M.
Omidi
,
F.
Yazdian
,
M.
Alebouyeh
, and
L.
Tayebi
,
Microchim. Acta
186
,
787
(
2019
).
50.
R.
Hernández
,
C.
Vallés
,
A. M.
Benito
,
W. K.
Maser
,
F. X.
Rius
, and
J.
Riu
,
Biosens. Bioelectron.
54
,
553
(
2014
).
51.
J.
Zhou
,
M.
Duan
,
D.
Huang
,
H.
Shao
,
Y.
Zhou
, and
Y.
Fan
,
J. Colloid Interface Sci.
606
,
1684
(
2022
).
52.
M.
Hirtz
,
A.
Oikonomou
,
T.
Georgiou
,
H.
Fuchs
, and
A.
Vijayaraghavan
,
Nat. Commun.
4
,
2591
(
2013
).
You do not currently have access to this content.