Developing molecular models to capture the complex physicochemical architecture of the bacterial cell wall and to study the interaction with antibacterial molecules is an important aspect of assessing and developing novel antimicrobial molecules. We carried out molecular dynamics simulations using an atomistic model of peptidoglycan to represent the architecture for Gram-positive S. aureus. The model is developed to capture various structural features of the Staphylococcal cell wall, such as the peptide orientation, area per disaccharide, glycan length distribution, cross-linking, and pore size. A comparison of the cell wall density and electrostatic potentials is made with a previously developed cell wall model of Gram-negative bacteria, E. coli, and properties for both single and multilayered structures of the Staphylococcal cell wall are studied. We investigated the interactions of the antimicrobial peptide melittin with peptidoglycan structures. The depth of melittin binding to peptidoglycan is more pronounced in E. coli than in S. aureus, and consequently, melittin has greater contacts with glycan units of E. coli. Contacts of melittin with the amino acids of peptidoglycan are comparable across both the strains, and the D-Ala residues, which are sites for transpeptidation, show enhanced interactions with melittin. A low energetic barrier is observed for translocation of a naturally occurring antimicrobial thymol with the four-layered peptidoglycan model. The molecular model developed for Gram-positive peptidoglycan allows us to compare and contrast the cell wall penetrating properties with Gram-negative strains and assess for the first time binding and translocation of antimicrobial molecules for Gram-positive cell walls.

1.
S. J.
Kim
,
J.
Chang
, and
M.
Singh
,
Biochim. Biophys. Acta Biomembr.
1848
,
350
(
2015
).
2.
B.
Lugtenberg
,
Trends Biochem. Sci.
6
,
262
(
1981
).
3.
J.
van Heijenoort
and
L.
Gutmann
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
5028
(
2000
).
4.
J.-M.
Ghuysen
and
R.
Hakenbeck
,
Bacterial Cell Wall
(
Elsevier
,
New York
,
1994
).
5.
J. T.
Park
,
J. Biol. Chem.
194
,
877
(
1952
).
6.
J. T.
Park
and
J. L.
Strominger
,
Science
125
,
99
(
1957
).
7.
E. S.
Holdsworth
,
Biochim. Biophys. Acta
9
,
19
(
1952
).
8.
M.
Salton
,
Biochim. Biophys. Acta
22
,
495
(
1956
).
9.
C.
Cummins
and
H.
Harris
,
Biochem. J.
57
,
xxxii
(
1954
).
10.
M.
Ikawa
and
E. E.
Snell
,
Biochim. Biophys. Acta
19
,
576
(
1956
).
11.
R.
Burge
,
A.
Fowler
, and
D.
Reaveley
,
J. Mol. Biol.
117
,
927
(
1977
).
12.
L.
Pasquina-Lemonche
,
J.
Burns
,
R. D.
Turner
,
S.
Kumar
,
R.
Tank
,
N.
Mullin
,
J. S.
Wilson
,
B.
Chakrabarti
,
P. A.
Bullough
,
S. J.
Foster
, and
J. K.
Hobbs
,
Nature
582
,
294
(
2020
).
13.
I. G.
Boneca
,
Z.-H.
Huang
,
D. A.
Gage
, and
A.
Tomasz
,
J. Biol. Chem.
275
,
9910
(
2000
).
14.
H.
Labischinski
,
G.
Barnickel
,
H.
Bradaczek
, and
P.
Giesbrecht
,
Eur. J. Biochem.
95
,
147
(
1979
).
15.
S. J.
Kim
,
L.
Cegelski
,
D. R.
Studelska
,
R. D.
O’Connor
,
A. K.
Mehta
, and
J.
Schaefer
,
Biochemistry
41
,
6967
(
2002
).
16.
V. R.
Matias
and
T. J.
Beveridge
,
J. Bacteriol.
188
,
1011
(
2006
).
17.
L.-T.
Ou
and
R. E.
Marquis
,
J. Bacteriol.
101
,
92
(
1970
).
18.
T.
Kamiryo
and
M.
Matsuhashi
,
J. Biol. Chem.
247
,
6306
(
1972
).
19.
U.
Kopp
,
M.
Roos
,
J.
Wecke
, and
H.
Labischinski
,
Microb. Drug Resist.
2
,
29
(
1996
).
20.
S.
Sharif
,
M.
Singh
,
S. J.
Kim
, and
J.
Schaefer
,
J. Am. Chem. Soc.
131
,
7023
(
2009
).
21.
M.
Kelemen
and
H.
Rogers
,
Proc. Natl. Acad. Sci. U.S.A.
68
,
992
(
1971
).
22.
B. A.
Dmitriev
,
F. V.
Toukach
,
O.
Holst
,
E.
Rietschel
, and
S.
Ehlers
,
J. Bacteriol.
186
,
7141
(
2004
).
23.
M.
Beeby
,
J. C.
Gumbart
,
B.
Roux
, and
G. J.
Jensen
,
Mol. Microbiol.
88
,
664
(
2013
).
24.
R.
Ślusarz
,
M.
Szulc
, and
J.
Madaj
,
Carbohydr. Res.
389
,
154
(
2014
).
25.
J.
Chang
,
H.
Zhou
,
M.
Preobrazhenskaya
,
P.
Tao
, and
S. J.
Kim
,
Biochemistry
55
,
3383
(
2016
).
26.
F.
Wang
,
H.
Zhou
,
O. P.
Olademehin
,
S. J.
Kim
, and
P.
Tao
,
ACS Omega
3
,
37
(
2018
).
27.
A. C.
Pushkaran
,
N.
Nataraj
,
N.
Nair
,
F.
Gotz
,
R.
Biswas
, and
C. G.
Mohan
,
J. Chem. Inf. Model.
55
,
760
(
2015
).
28.
J. C.
Gumbart
,
M.
Beeby
,
G. J.
Jensen
, and
B.
Roux
,
PLoS Comput. Biol.
10
,
e1003475
(
2014
).
29.
R.
Vaiwala
,
P.
Sharma
,
M.
Puranik
, and
K. G.
Ayappa
,
J. Chem. Theory Comput.
16
,
5369
(
2020
).
30.
P.
Sharma
,
R. K.
Vaiwala
,
S.
Parthasarathi
,
N.
Patil
,
M.
Waskar
,
J. S.
Raut
,
J. K.
Basu
, and
K. G.
Ayappa
, “Interactions of surfactants with the bacterial cell wall and inner membrane: Revealing the link between aggregation and antimicrobial activity,”
Langmuir
(published online 2022).
31.
A. T.
Boags
,
F.
Samsudin
, and
S.
Khalid
,
Structure
27
,
713
(
2019
).
32.
F.
Samsudin
,
A.
Boags
,
T. J.
Piggot
, and
S.
Khalid
,
Biophys. J.
113
,
1496
(
2017
).
33.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002087 for molecular topology and structure files, secondary structure of melittin in water, free energy profiles for melittin interactions with S. aureus and E. coli model cell walls, histograms for helix angles, and secondary structure analysis for melittin interacting with model cell walls.
34.
M. A.
Snowden
and
H. R.
Perkins
,
Eur. J. Biochem.
191
,
373
(
1990
).
35.
W.
Vollmer
and
S. J.
Seligman
,
Trends Microbiol.
18
,
59
(
2010
).
36.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1
,
19
(
2015
).
37.
X.
Zhu
,
P. E.
Lopes
, and
A. D.
MacKerell
, Jr.
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
167
(
2012
).
38.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
39.
K.
Vanommeslaeghe
,
E. P.
Raman
, and
A. D.
MacKerell
, Jr.
,
J. Chem. Inf. Model.
52
,
3155
(
2012
).
40.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
41.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
42.
B.
Hess
,
H.
Bekker
,
H. J.
Berendsen
, and
J. G.
Fraaije
,
J. Comput. Chem.
18
,
1463
(
1997
).
43.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
44.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
45.
V.
Braun
,
H.
Gnirke
,
U.
Henning
, and
K.
Rehn
,
J. Bacteriol.
114
,
1264
(
1973
).
46.
V.
Braun
,
J. Infect. Dis.
128
,
S9
(
1973
).
47.
B.
Glauner
,
J.
Höltje
, and
U.
Schwarz
,
J. Biol. Chem.
263
,
10088
(
1988
).
48.
B.
Glauner
and
J.
Höltje
,
J. Biol. Chem.
265
,
18988
(
1990
).
49.
W.
Vollmer
and
J.-V.
Holtje
,
J. Bacteriol.
186
,
5978
(
2004
).
50.
F.
Wientjes
,
C.
Woldringh
, and
N.
Nanninga
,
J. Bacteriol.
173
,
7684
(
1991
).
51.
P.
Demchick
and
A. L.
Koch
,
J. Bacteriol.
178
,
768
(
1996
).
52.
A.
Hollmann
,
M.
Martinez
,
P.
Maturana
,
L. C.
Semorile
, and
P. C.
Maffia
,
Front. Chem.
6
,
204
(
2018
).
53.
S. E.
Blondelle
and
R. A.
Houghten
,
Biochemistry
30
,
4671
(
1991
).
54.
L.
Pan
,
J.
Na
,
Z.
Xing
,
H.
Fang
, and
G.
Wang
,
Chin. Sci. Bull.
52
,
639
(
2007
).
55.
S.
Dosler
and
A. A.
Gerceker
,
J. Chemother.
24
,
137
(
2012
).
56.
J. H.
Choi
,
A. Y.
Jang
,
S.
Lin
,
S.
Lim
,
D.
Kim
,
K.
Park
,
S.-M.
Han
,
J.-H.
Yeo
, and
H. S.
Seo
,
Mol. Med. Rep.
12
,
6483
(
2015
).
57.
W. G.
Lima
,
J. C. M.
de Brito
,
V. N.
Cardoso
, and
S. O. A.
Fernandes
,
Eur. J. Pharm. Sci.
156
,
105592
(
2021
).
58.
A.
Glättli
,
I.
Chandrasekhar
, and
W. F.
van Gunsteren
,
Eur. Biophys. J.
35
,
255
(
2006
).
59.
A. F.
Marques Pereira
et al.,
Microb. Pathogen
141
,
104011
(
2020
).
60.
P.
Sharma
and
K. G.
Ayappa
,
J. Membr. Biol.
255, 665 (2022).
61.
C. E.
Dempsey
,
Biochim. Biophys. Acta Rev. Biomembr.
1031
,
143
(
1990
).
62.
A. K.
Ghosh
,
R.
Rukmini
, and
A.
Chattopadhyay
,
Biochemistry
36
,
14291
(
1997
).
63.
H.
Raghuraman
and
A.
Chattopadhyay
,
Biosci. Rep.
27
,
189
(
2007
).
64.
C.
Xu
,
W.
Ma
,
K.
Wang
,
K.
He
,
Z.
Chen
,
J.
Liu
,
K.
Yang
, and
B.
Yuan
,
J. Phys. Chem. Lett.
11
,
4834
(
2020
).
65.
I.
Brand
and
B.
Khairalla
,
Faraday Discuss.
232
,
68
(
2021
).
66.
N.
Nelson
and
D. K.
Schwartz
,
Biophys. J.
114
,
2606
(
2018
).
67.
T.
Picoli
et al.,
Microb. Pathogen
112
,
57
(
2017
).
68.
O. P.
Neelay
,
C. A.
Peterson
,
M. E.
Snavely
,
T. C.
Brown
,
A. F.
TecleMariam
,
J. A.
Campbell
,
A. M.
Blake
,
S. C.
Schneider
, and
M. E.
Cremeens
,
J. Mol. Struct.
1146
,
329
(
2017
).
69.
P. C.
Kahn
,
Comput. Chem.
13
,
185
(
1989
).
70.
H. R.
Perkins
and
M.
Nieto
, “The significance of d-alanyl-d-alanine termini in the biosynthesis of bacterial cell walls and the action of penicillin, vancomycin and ristocetin,” in Medicinal Chemistry III (Elsevier, London, 1973), pp. 371–381.
71.
A.
Marchese
,
I. E.
Orhan
,
M.
Daglia
,
R.
Barbieri
,
A.
Di Lorenzo
,
S. F.
Nabavi
,
O.
Gortzi
,
M.
Izadi
, and
S. M.
Nabavi
,
Food Chem.
210
,
402
(
2016
).
72.
G.
Zarrini
,
Z. B.
Delgosha
,
K. M.
Moghaddam
, and
A. R.
Shahverdi
,
Pharm. Biol.
48
,
633
(
2010
).
73.
P.
Sharma
,
S.
Parthasarathi
,
N.
Patil
,
M.
Waskar
,
J. S.
Raut
,
M.
Puranik
,
K. G.
Ayappa
, and
J. K.
Basu
,
Langmuir
36
,
8800
(
2020
).

Supplementary Material

You do not currently have access to this content.