Hydrogels are soft hydrated polymer networks that are widely used in research and industry due to their favorable properties and similarity to biological tissues. However, it has long been difficult to create a hydrogel emulating the heterogeneous structure of special tissues, such as cartilage. One potential avenue to develop a structural variation in a hydrogel is the “mold effect,” which has only recently been discovered to be caused by absorbed oxygen within the mold surface interfering with the polymerization. This induces a dilute gradient-density surface layer with altered properties. However, the precise structure of the gradient-surface layer and its contact response have not yet been characterized. Such knowledge would prove useful for designs of composite hydrogels with altered surface characteristics. To fully characterize the hydrogel gradient-surface layer, we created five hydrogel compositions of varying monomer and cross-linker content to encompass variations in the layer. Then, we used particle exclusion microscopy during indentation and creep experiments to probe the contact response of the gradient layer of each composition. These experiments showed that the dilute structure of the gradient layer follows evolving contact behavior allowing poroelastic squeeze-out at miniscule pressures. Stiffer compositions had thinner gradient layers. This knowledge can potentially be used to create hydrogels with a stiff load-bearing bulk with altered surface characteristics tailored for specific tribological applications.

1.
N. A.
Peppas
and
C. T.
Reinhart
,
J. Membr. Sci.
15
,
275
(
1983
).
2.
A. A.
Pitenis
,
J. M.
Urueña
,
A. C.
Cooper
,
T. E.
Angelini
, and
W. G.
Sawyer
,
J. Tribol.
138
(4),
042103
(
2016
).
3.
A. S.
Hoffman
,
Adv. Drug Deliv. Rev.
54
,
3
(
2002
).
4.
B. D.
Ratner
and
A. S.
Hoffman
, “Synthetic hydrogels for biomedical applications,”
Hydrogels for Medical and Related Applications
, ACS Symposium Series Vol. 31 (
American Chemical Society
,
Washington, DC
,
1976
), pp.
1
36
.
5.
O.
Wichterle
and
D.
Lím
,
Nature
185
,
117
(
1960
).
6.
7.
J. L.
Drury
and
D. J.
Mooney
,
Biomaterials
24
,
4337
(
2003
).
8.
D.
DeRossi
,
K.
Kajiwara
,
Y.
Osada
, and
A.
Yamauchi
,
J. Chem. Inf. Model.
53
,
289
(
1991
).
9.
S. H.
Kim
,
C.
Marmo
, and
G. A.
Somorjai
,
Biomaterials
22
,
3285
(
2001
).
10.
A. C.
Dunn
,
J. A.
Cobb
,
A. N.
Kantzios
,
S. J.
Lee
,
M.
Sarntinoranont
,
R.
Tran-Son-Tay
, and
W. G.
Sawyer
,
Tribol. Lett.
30
,
13
(
2008
).
11.
A. C.
Dunn
,
J. M.
Urueña
,
E.
Puig
,
V. L.
Perez
, and
W. G.
Sawyer
,
Tribol. Lett.
49
,
145
(
2013
).
12.
H.
Pult
,
S. G.
Tosatti
,
N. D.
Spencer
,
J. M.
Asfour
,
M.
Ebenhoch
, and
P. J.
Murphy
,
Ocul. Surf.
13
,
236
(
2015
).
13.
M.
Samsom
,
A.
Chan
,
Y.
Iwabuchi
,
L.
Subbaraman
,
L.
Jones
, and
T. A.
Schmidt
,
Tribol. Int.
89
,
27
(
2015
).
14.
S. M.
Hart
,
E. O.
Mcghee
,
J.
Manuel
,
U.
Padraic
,
P. L.
Stephen
,
M. A.
Schaller
,
A. A.
Pitenis
, and
W. G.
Sawyer
,
Tribol. Lett.
68
,
106
(
2020
).
15.
O.
Sterner
,
C.
Karageorgaki
,
M.
Zürcher
,
S.
Zürcher
,
C. W.
Scales
,
Z.
Fadli
,
N. D.
Spencer
, and
S. G.
Tosatti
,
ACS Appl. Mater. Interfaces
9
,
20150
(
2017
).
16.
I. L.
Kim
,
R. L.
Mauck
, and
J. A.
Burdick
,
Biomaterials
32
,
8771
(
2011
).
17.
M.
Freeman
,
M.
Furey
,
B.
Love
, and
J.
Hampton
,
Wear
241
,
129
(
2000
).
18.
K. L.
Spiller
,
S. A.
Maher
, and
A. M.
Lowman
,
Tissue Eng. Part B
17
,
281
(
2011
).
19.
C. M.
Beddoes
,
M. R.
Whitehouse
,
W. H.
Briscoe
, and
B.
Su
,
Materials
9
,
443
(
2016
).
20.
F.
Li
,
A.
Wang
, and
C.
Wang
,
J. Mater. Sci.: Mater. Med.
27
,
87
(
2016
).
21.
Y.
Shi
and
D.
Xiong
,
Wear
305
,
280
(
2013
).
22.
M. M.
Blum
and
T. C.
Ovaert
,
Mater. Sci. Eng., C
33
,
4377
(
2013
).
23.
M. A.
Haque
,
T.
Kurokawa
, and
J. P.
Gong
,
Polymer
53
,
1805
(
2012
).
24.
R.
Crockett
,
A.
Grubelnik
,
S.
Roos
,
C.
Dora
,
W.
Born
, and
H.
Troxler
,
J. Biomed. Mater. Res. Part A
82
,
958
(
2007
).
25.
E. D.
Bonnevie
,
V. J.
Baro
,
L.
Wang
, and
D. L.
Burris
,
J. Biomech.
45
,
1036
(
2012
).
26.
J. P.
Gong
,
Y.
Katsuyama
,
T.
Kurokawa
, and
Y.
Osada
,
Adv. Mater.
15
,
1155
(
2003
).
27.
J. Y.
Sun
,
X.
Zhao
,
W. R.
Illeperuma
,
O.
Chaudhuri
,
K. H.
Oh
,
D. J.
Mooney
,
J. J.
Vlassak
, and
Z.
Suo
,
Nature
489
,
133
(
2012
).
28.
P.
Lin
,
S.
Ma
,
X.
Wang
, and
F.
Zhou
,
Adv. Mater.
27
,
2054
(
2015
).
29.
Y.-S.
Pan
,
D.-S.
Xiong
, and
R.-Y.
Ma
,
Wear
262
,
1021
(
2007
).
30.
Y.
Pan
and
D.
Xiong
,
Wear
266
,
699
(
2009
).
31.
A. A.
Pitenis
,
J. M.
Urueña
,
R. M.
Nixon
,
T.
Bhattacharjee
,
B. A.
Krick
,
A. C.
Dunn
,
T. E.
Angelini
, and
W. G.
Sawyer
,
J. Tribol.
138
,
042102
(
2016
).
32.
A.
Kii
,
J.
Xu
,
J. P.
Gong
,
Y.
Osada
, and
X.
Zhang
,
J. Phys. Chem. B
105
,
4565
(
2001
).
33.
34.
Y. A.
Meier
,
K.
Zhang
,
N. D.
Spencer
, and
R.
Simic
,
Langmuir
35
,
15805
(
2019
).
35.
Y.
Gombert
,
R.
Simič
,
F.
Roncoroni
,
M.
Dübner
,
T.
Geue
, and
N. D.
Spencer
,
Adv. Mater. Interfaces
6
,
1901320
(
2019
).
36.
R.
Simič
,
J.
Mandal
,
K.
Zhang
, and
N. D.
Spencer
,
Soft Matter
17
,
6394
(
2021
).
37.
Y.
Lai
,
D.
He
, and
Y.
Hu
,
Extreme Mech. Lett.
31
,
100540
(
2019
).
38.
J. M.
Urueña
,
A. A.
Pitenis
,
R. M.
Nixon
,
K. D.
Schulze
,
T. E.
Angelini
, and
W.
Gregory Sawyer
,
Biotribology
1–2
,
24
(
2015
).
39.
J. M.
Urueña
,
E. O.
McGhee
,
T. E.
Angelini
,
D.
Dowson
,
W. G.
Sawyer
, and
A. A.
Pitenis
,
Biotribology
13
,
30
(
2018
).
40.
T.
Shoaib
and
R. M.
Espinosa-Marzal
,
Tribol. Lett.
66
,
1
(
2018
).
41.
T.
Shoaib
,
J.
Heintz
,
J. A.
Lopez-Berganza
,
R.
Muro-Barrios
,
S. A.
Egner
, and
R. M.
Espinosa-Marzal
,
Langmuir
34
,
756
(
2018
).
42.
T.
Shoaib
and
R. M.
Espinosa-Marzal
,
ACS Appl. Mater. Interfaces
11
,
42722
(
2019
).
43.
T.
Shoaib
and
R. M.
Espinosa-Marzal
,
Colloids Interfaces
4
,
54
(
2020
).
44.
S. Z.
Bonyadi
,
M. M.
Hasan
,
J.
Kim
,
S.
Mahmood
,
K. D.
Schulze
, and
A. C.
Dunn
,
Tribol. Lett.
68
,
119
(
2020
).
45.
M.
Galli
,
K. S.
Comley
,
T. A.
Shean
, and
M. L.
Oyen
,
J. Mater. Res.
24
,
973
(
2009
).
46.
J.
Zhang
,
C. R.
Daubert
, and
E. A.
Foegeding
,
Rheol. Acta
44
,
622
(
2005
).
47.
C. L.
Johnson
and
A. C.
Dunn
,
Exp. Mech.
61
,
829
(
2021
).
48.
A. C.
Dunn
,
J. M.
Urueña
,
Y.
Huo
,
S. S.
Perry
,
T. E.
Angelini
, and
W. G.
Sawyer
,
Tribol. Lett.
49
,
371
(
2013
).
49.
E. O.
McGhee
,
A. A.
Pitenis
,
J. M.
Urueña
,
K. D.
Schulze
,
A. J.
McGhee
,
C. S.
O’Bryan
,
T.
Bhattacharjee
,
T. E.
Angelini
, and
W. G.
Sawyer
,
Biotribology
13
,
23
(
2018
).
50.
K. D.
Schulze
,
A. I.
Bennett
,
S.
Marshall
,
K. G.
Rowe
, and
A. C.
Dunn
,
J. Tribol.
138
,
041404
(
2016
).
51.
M.
Garcia
,
K. D.
Schulze
,
C. S.
O’Bryan
,
T.
Bhattacharjee
,
W. G.
Sawyer
, and
T. E.
Angelini
,
Tribol. Mater. Surf. Interfaces
11
,
187
(
2017
).
52.
E. P.
Chan
,
Y.
Hu
,
P. M.
Johnson
,
Z.
Suo
, and
C. M.
Stafford
,
Soft Matter
8
,
1492
(
2012
).
53.
Z. I.
Kalcioglu
,
R.
Mahmoodian
,
Y.
Hu
,
Z.
Suo
, and
K. J.
Van Vliet
,
Soft Matter
8
,
3393
(
2012
).
54.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
2003
), pp.
282
293
.
55.
Y.-Y.
Lin
and
B.-W.
Hu
,
J. Non-Cryst. Solids
352
,
4034
(
2006
).
56.
Y.
Hu
,
X.
Zhao
,
J. J.
Vlassak
, and
Z.
Suo
,
Appl. Phys. Lett.
96
,
121904
(
2010
).
57.
A. A.
Pitenis
,
J. M.
Urueña
,
K. D.
Schulze
,
R. M.
Nixon
,
A. C.
Dunn
,
B. A.
Krick
,
W. G.
Sawyer
, and
T. E.
Angelini
,
Soft Matter
10
,
8955
(
2014
).
58.
G. H.
Fredrickson
,
A.
Ajdari
,
L.
Leibler
, and
J. P.
Carton
,
Macromolecules
25
,
2882
(
1992
).
59.
D. R.
Williams
,
Macromolecules
26
,
5096
(
1993
).
60.
P.
Põdra
and
S.
Andersson
,
Wear
207, 1–2 (1997).
61.
A. A.
Pitenis
and
W. G.
Sawyer
,
Tribol. Lett.
66
,
113
(
2018
).
62.
Y.
Gombert
,
F.
Roncoroni
,
A.
Sánchez-Ferrer
, and
N. D.
Spencer
,
Soft Matter
16
,
9789
(
2020
).
63.
R.
Simič
,
M.
Yetkin
,
K.
Zhang
, and
N. D.
Spencer
,
Tribol. Lett.
68
,
64
(
2020
).
64.
J.
Klein
,
D.
Perahia
, and
S.
Warburg
,
Nature
352
,
143
(
1991
).
65.
M. K.
Singh
,
P.
Ilg
,
R. M.
Espinosa-Marzal
,
M.
Kröger
, and
N. D.
Spencer
,
Tribol. Lett.
63
,
17
(
2016
).
66.
K. D.
Schulze
,
S. M.
Hart
,
S. L.
Marshall
,
C. S. O.
Bryan
,
J. M.
Urueña
,
A. A.
Pitenis
,
W. G.
Sawyer
, and
T. E.
Angelini
,
Biotribology
11
,
3
(
2017
).
67.
A.
Bhattacharyya
,
C.
O’Bryan
,
Y.
Ni
,
C. D.
Morley
,
C. R.
Taylor
, and
T. E.
Angelini
,
Biotribology
22
,
100125
(
2020
).
68.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002047 for extended discussion of the tribometer setup, particle exclusion methodology, Garcia method application, and additional indentation results.

Supplementary Material

You do not currently have access to this content.