RNA-based therapeutics hold a great promise in treating a variety of diseases. However, double-stranded RNAs (dsRNAs) are inherently unstable, highly charged, and stiff macromolecules that require a delivery vehicle. Cationic ligand functionalized gold nanoparticles (AuNPs) are able to compact nucleic acids and assist in RNA delivery. Here, we use large-scale all-atom molecular dynamics simulations to show that correlations between ligand length, metal core size, and ligand excess free volume control the ability of nanoparticles to bend dsRNA far below its persistence length. The analysis of ammonium binding sites showed that longer ligands that bind deep within the major groove did not cause bending. By limiting ligand length and, thus, excess free volume, we have designed nanoparticles with controlled internal binding to RNA's major groove. NPs that are able to induce RNA bending cause a periodic variation in RNA's major groove width. Density functional theory studies on smaller models support large-scale simulations. Our results are expected to have significant implications in packaging of nucleic acids for their applications in nanotechnology and gene delivery.

1.
Q.
Zheng
,
P.
Ryvkin
,
F.
Li
,
I.
Dragomir
,
O.
Valladares
,
J.
Yang
,
K.
Cao
,
L.-S.
Wang
, and
B. D.
Gregory
,
PLoS Genet.
6
,
e1001141
(
2010
).
2.
H.
Liu
,
Y.
Fu
,
D.
Jiang
,
G.
Li
,
J.
Xie
,
J.
Cheng
,
Y.
Peng
,
S. A.
Ghabrial
, and
X.
Yi
,
J. Virol.
84
,
11876
(
2010
).
3.
X.
Han
,
M. J.
Mitchell
, and
G.
Nie
,
Matter
3
,
1948
(
2020
).
4.
V.
Abashkin
,
E.
Pędziwiatr-Werbicka
,
R.
Gómez
,
F. J.
de la Mata
,
V.
Dzmitruk
,
D.
Shcharbin
, and
M.
Bryszewska
,
Pharmaceutics
13
,
1549
(
2021
).
5.
G.
Meister
and
T.
Tuschl
,
Nature
431
,
343
(
2004
).
6.
Y.
Zhao
,
L.
Cong
, and
W. J.
Lukiw
,
Cell. Mol. Neurobiol.
38
,
133
(
2018
).
7.
K.
Paunovska
,
D.
Loughrey
, and
J. E.
Dahlman
,
Nat. Rev. Genet.
23
,
265
(
2022
).
8.
X.
Dai
,
Z.
Li
,
M.
Lai
,
S.
Shu
,
Y.
Du
,
Z. H.
Zhou
, and
R.
Sun
,
Nature
541
,
112
(
2017
).
9.
P.
Guo
and
T. J.
Lee
,
Mol. Microbiol.
64
,
886
(
2007
).
10.
A.
Raina
,
K.
Tuomi
, and
R.
Mäntyjärvi
,
Med. Biol.
59
,
428
(
1981
), available at https://pubmed.ncbi.nlm.nih.gov/6279979/.
11.
U.
Bachrach
,
S.
Don
, and
H.
Wiener
,
J. Gen. Virol.
22
,
451
(
1974
).
12.
S. L.
Sheppard
,
A. T.
Burness
, and
S. M.
Boyle
,
J. Virol.
34
,
266
(
1980
).
13.
B. C.
Mounce
,
M. E.
Olsen
,
M.
Vignuzzi
, and
J. H.
Connor
,
Microbiol. Mol. Biol. Rev.
81
,
e00029
(
2017
).
14.
A.
Pérez
,
A.
Noy
,
F.
Lankas
,
F. J.
Luque
, and
M.
Orozco
,
Nucleic Acids Res.
32, 6144–6151 (2004).
15.
A.
Noy
,
A.
Pérez
,
F.
Lankas
,
F. J.
Luque
, and
M.
Orozco
,
J. Mol. Bio.
343, 627–638 (2004).
16.
L.
Bao
,
X.
Zhang
,
Y.-Z.
Shi
,
Y.-Y.
Wu
, and
Z.-J.
Tan
,
Biophys. J.
112, 1094–1104 (
2017
).
17.
L.
Li
,
S. A.
Pabit
,
S. P.
Meisburger
, and
L.
Pollack
,
Phys. Rev. Lett.
106
,
108101
(
2011
).
18.
A. M.
Katz
,
I. S.
Tolokh
,
S. A.
Pabit
,
N.
Baker
,
A. V.
Onufriev
, and
L.
Pollack
,
Biophys. J.
112, 22–30 (
2017
).
19.
I. S.
Tolokh
,
S. A.
Pabit
,
A. M.
Katz
,
Y.
Chen
,
A.
Drozdetski
,
N.
Baker
,
L.
Pollack
, and
A. V.
Onufriev
,
Nucl. Acids Res.
42
,
10823
(
2014
).
20.
I. S.
Tolokh
,
S. A.
Pabit
,
A. M.
Katz
,
Y.
Chen
,
A.
Drozdetski
,
N.
Baker
,
L.
Pollack
, and
A. V.
Onufriev
(
2017
).
21.
Z.
Elhaj Baddar
,
D.
Gurusamy
,
J.
Laisney
,
P.
Tripathi
,
S. R.
Palli
, and
J. M.
Unrine
,
J. Agric. Food Chem.
68
,
6811
(
2020
).
22.
R. K.
Dhandapani
,
D.
Gurusamy
, and
S. R.
Palli
,
ACS Appl. Bio Mater.
4
,
4310
(
2021
).
23.
H.
Kolge
,
K.
Kadam
,
S.
Galande
,
V.
Lanjekar
, and
V.
Ghormade
,
ACS Appl. Bio Mater.
4
,
5145
(
2021
).
24.
J.
Laisney
,
D.
Gurusamy
,
Z. E.
Baddar
,
S. R.
Palli
, and
J. M.
Unrine
,
ACS Appl. Mater. Interfaces
12
,
25645
(
2020
).
25.
S. S.
Lichtenberg
,
J.
Laisney
,
Z.
Elhaj Baddar
,
O. V.
Tsyusko
,
S. R.
Palli
,
C.
Levard
,
A.
Masion
, and
J. M.
Unrine
,
J. Agric. Food Chem.
68
,
7926
(
2020
).
26.
M. T.
Samani
and
S. M.
Hashemianzadeh
,
J. Mol. Graph. Model.
101
,
107749
(
2020
).
27.
M.
Matur
,
H.
Madhyastha
,
T. S.
Shruthi
,
R.
Madhyastha
,
S. P.
Srinivas
,
P. N.
Navya
, and
H. K.
Daima
,
Sci. Rep.
10
,
19713
(
2020
).
28.
Y.
Genji Srinivasulu
,
Q.
Yao
,
N.
Goswami
, and
J.
Xie
,
Mater. Horizons
7
,
2596
(
2020
).
29.
M.
Rodríguez-Castillo
 et al.,
Chem. A Eur. J.
22
,
10680
(
2016
).
30.
M.
Pinatto-Botelho
,
R.
da Silva
,
M.
Archilha
,
L.
Giroldo
,
A.
Kuznetsov
,
F.
Meotti
, and
A.
dos Santos
,
J. Braz. Chem. Soc.
(
2020
), available at https://www.scielo.br/j/jbchs/a/zfgJn5dfHPTH3jfQYFrQtLH/.
31.
G.
Lugo
,
V.
Schwanen
,
B.
Fresch
, and
F.
Remacle
,
J. Phys. Chem. C
119
,
10969
(
2015
).
32.
Y.
Sato
,
M.
Mitani
, and
H.
Yao
,
J. Phys. Chem. C
124
,
25547
(
2020
).
33.
M.
Vanzan
and
S.
Corni
,
J. Phys. Chem. A
122
,
6864
(
2018
).
34.
C.
Aliaga
,
P.
Fuentealba
,
F.
Muñoz
,
C.
Pastenes
,
M. C.
Rezende
,
E.
Spodine
, and
C.
Cárdenas
,
J. Phys. Chem. C
123
,
21713
(
2019
).
35.
L.
Sementa
,
G.
Barcaro
,
O.
Baseggio
,
M.
De Vetta
,
A.
Dass
,
E.
Aprà
,
M.
Stener
, and
A.
Fortunelli
,
J. Phys. Chem. C
121
,
10832
(
2017
).
36.
A.
Cirri
,
H.
Morales Hernández
,
C.
Kmiotek
, and
C. J.
Johnson
,
Angew. Chem. Int. Ed.
58
,
13818
(
2019
).
37.
Y.
Lv
,
X.
Kang
,
S.
Yang
,
T.
Chen
,
A.
Liu
,
H.
Yu
, and
M.
Zhu
,
RSC Adv.
7
,
51538
(
2017
).
38.
J. A.
Nash
,
A. L.
Kwansa
,
J. S.
Peerless
,
H. S.
Kim
, and
Y. G.
Yingling
,
Bioconjug. Chem.
6b00534
(
2016
), available at https://pubs.acs.org/doi/10.1021/acs.bioconjchem.6b00534.
39.
J. A.
Nash
,
A.
Singh
,
N. K.
Li
, and
Y. G.
Yingling
,
ACS Nano
9
,
12374
(
2015
).
40.
J. G.
Railsback
,
A.
Singh
,
R. C.
Pearce
,
T. E.
McKnight
,
R.
Collazo
,
Z.
Sitar
,
Y. G.
Yingling
, and
A. V.
Melechko
,
Adv. Mater.
24
,
4261
(
2012
).
41.
C. A.
Fields-Zinna
,
R.
Sardar
,
C. A.
Beasley
, and
R. W.
Murray
,
J. Am. Chem. Soc.
131
,
16266
(
2009
).
42.
A.
Jiménez
,
A.
Sarsa
,
M.
Blázquez
, and
T.
Pineda
,
J. Phys. Chem. C
114
,
21309
(
2010
).
43.
K.
Luger
,
A. W.
Mäder
,
R. K.
Richmond
,
D. F.
Sargent
, and
T. J.
Richmond
,
Nature
389
,
251
(
1997
).
44.
A.
Pérez
,
I.
Marchán
,
D.
Svozil
,
J.
Sponer
,
T. E.
Cheatham
,
C. A.
Laughton
, and
M.
Orozco
,
Biophys. J.
92
,
3817
(
2007
).
45.
J. A.
Nash
,
T. L.
Tucker
,
W.
Therriault
, and
Y. G.
Yingling
,
Biointerphases
11
,
04B305
(
2016
).
46.
E.
Vanquelef
,
S.
Simon
,
G.
Marquant
,
E.
Garcia
,
G.
Klimerak
,
J. C.
Delepine
,
P.
Cieplak
, and
F.-Y.
Dupradeau
,
Nucl. Acids Res.
39
,
W511
(
2011
).
47.
M.
Frisch
 et al., D. Gaussian 09 (Revision E01) (
Gaussian Inc.
,
Wallingford, CT
,
2009
).
48.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
49.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
50.
G.
Scalmani
and
M. J.
Frisch
,
J. Chem. Phys.
132
,
114110
(
2010
).
51.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
52.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).
53.
G.
Schaftenaar
and
J. H.
Noordik
,
J. Comput. Aided Mol. Des.
14
,
123
(
2000
).
54.
M. D.
Hanwell
,
D. E.
Curtis
,
D. C.
Lonie
,
T.
Vandermeersch
,
E.
Zurek
, and
G. R.
Hutchison
,
J. Cheminform.
4
,
17
(
2012
).
55.
D. A.
Case
 et al., University of California, San Francisco (
2014
).
56.
D. A.
Case Ross
,
C.
Walker
, and
T.
Darden Junmei Wang
,
Amber 2016 Reference Manual Principal Contributors to the Current Codes
(2016).
57.
A. W.
Götz
,
M. J.
Williamson
,
D.
Xu
,
D.
Poole
,
S.
Le Grand
, and
R. C.
Walker
,
J. Chem. Theor. Comput.
8
,
1542
(
2012
).
58.
R.
Salomon-Ferrer
,
A. W.
Götz
,
D.
Poole
,
S.
Le Grand
, and
R. C.
Walker
,
J. Chem. Theor. Comput.
9
,
3878
(
2013
).
59.
S.
Le Grand
,
A. W.
Götz
, and
R. C.
Walker
,
Comput. Phys. Commun.
184
,
374
(
2013
).
60.
A.
Singh
,
S.
Snyder
,
L.
Lee
,
A. P. R.
Johnston
,
F.
Caruso
, and
Y. G.
Yingling
,
Langmuir
26
,
17339
(
2010
).
61.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
62.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
63.
D. R.
Roe
and
T. E.
Cheatham
,
J. Chem. Theor. Comput.
9
,
3084
(
2013
).
64.
R.
Lavery
,
M.
Moakher
,
J. H.
Maddocks
,
D.
Petkeviciute
, and
K.
Zakrzewska
,
Nucl. Acids Res.
37
,
5917
(
2009
).
65.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graph.
14
,
33
(
1996
).
66.
J. M. D.
Lane
and
G. S.
Grest
,
Phys. Rev. Lett.
104
,
235501
(
2010
).
67.
J.
Langowski
and
D. W.
Heermann
,
Semin. Cell Dev. Biol.
18
,
659
(
2007
).
68.
69.
G. S.
Manning
J. Am. Chem. Soc.
125, 15087 (2003).
70.
T. J. D.
Richmond
and
A.
Curt
,
Nature
423
, 145 (
2003
).
71.
X.-J.
Lu
and
W. K.
Olson
,
Nat. Protoc.
3, 1213 (2008).
72.
X.-J.
Lu
,
Nucl. Acids Res.
31
,
5108
(
2003
).
73.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002043 for detailed description of all performed MD simulations and parameters of the systems, Information on the NPs characterization, Procedure description, outcomes, and conclusions on additionally performed DFT simulations of NP-ligand systems.

Supplementary Material

You do not currently have access to this content.