We describe a basic theoretical treatment of how film–substrate and substrate–environment (air, water, and solution) interfaces can be selectively probed by controlling the film thickness and beam angles in a visible-infrared sum frequency generation experiment. In this model, we also account for the unique interfacial environment that may have optical properties that differ from the adjacent bulk phases. We see that this affects components of the electric field that are perpendicular to the surface such as when p-polarized light is used. We then provide an example using the glass–polydimethylsiloxane–air system and model the fields at both surfaces of the polymer. This is followed by some practical considerations for setting up such experiments and some typical experimental results.

1.
Y. R.
Shen
,
The Principles of Nonlinear Optics
(
John Wiley & Sons
,
New York
,
1984
).
2.
A.
Morita
,
Theory of Sum Frequency Generation Spectroscopy
(
Springer
,
Singapore
,
2018
).
5.
R. W.
Boyd
,
Nonlinear Optics
, 2nd ed. (
Academic
,
San Diego
,
2003
).
6.
N. J.
Harrick
,
Internal Reflection Spectroscopy
(
Interscience
,
New York
,
1967
).
7.
M.
Milosevic
,
Internal Reflection and ATR Spectroscopy
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2012
).
8.
Z.
Chen
,
Y. R.
Shen
, and
G. A.
Somorjai
,
Annu. Rev. Phys. Chem.
53
,
437
(
2002
).
9.
R. M. A.
Azzam
and
N. M.
Bashara
,
Ellipsometry and Polarized Light
(
North-Holland Publishing Company
,
New York
,
1977
).
10.
H. G.
Tompkins
and
E. A.
Irene
,
Handbook of Ellipsometry
(
William Andrew, Inc.
,
Norwich, NY
,
2005
).
11.
Y. R.
Shen
, in Proceedings of the International School of Physics “Enrico Fermi,” edited by T. W. Hansch and M. Inguscio (North Holland, Amsterdam, 1994), pp. 139–165.
12.
G.
Rupprechter
and
A.
Bandara
,
Sum Frequency Generation (SFG) Spectroscopy
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2011
), Chap. 26, pp. 407–435.
13.
Y. R.
Shen
,
Pure Appl. Chem.
73
,
1589
(
2001
).
14.
15.
A. G.
Lambert
,
P. B.
Davies
, and
D. J.
Neivandt
,
Appl. Spectrosc. Rev.
40
,
103
(
2005
).
16.
H.-F.
Wang
,
L.
Velarde
,
W.
Gan
, and
L.
Fu
,
Annu. Rev. Phys. Chem.
66
,
189
(
2015
).
17.
Y. R.
Shen
,
J. Chem. Phys.
153
,
180901
(
2020
).
18.
C. S.
Tian
and
Y. R.
Shen
,
Surf. Sci. Rep.
69
,
105
(
2014
).
19.
J. P.
Smith
and
V.
Hinson-Smith
,
Anal. Chem.
76
,
287A
(
2004
).
20.
J. D.
Pickering
,
M.
Bregnhøj
,
A.
Chatterley
,
M. H.
Rasmussen
,
K.
Strunge
, and
T.
Weidner
,
Biointerphases
17
,
011201
(
2022
).
21.
J. D.
Pickering
,
M.
Bregnhøj
,
A.
Chatterley
,
M. H.
Rasmussen
,
S. J.
Roeters
,
K.
Strunge
, and
T.
Weidner
,
Biointerphases
17
,
011202
(
2022
).
22.
A. P.
Carpenter
and
J. E.
Baio
,
Biointerphases
17
,
031201
(
2022
).
23.
J. D.
Pickering
,
M.
Bregnhøj
,
M. H.
Rasmussen
,
K.
Strunge
, and
T.
Weidner
,
Biointerphases
17
,
041201
(
2022
).
24.
D.
O’Brien
and
A.
Massari
,
J. Chem. Phys
138
,
154708
(
2013
).
25.
D. B.
O’Brien
and
A. M.
Massari
,
J. Opt. Soc. Am. B
30
,
1503
(
2013
).
26.
D. B.
O’Brien
and
A. M.
Massari
,
J. Chem. Phys.
142
,
024703
(
2015
).
27.
A. G.
Lambert
,
D. J.
Neivandt
,
A. M.
Briggs
,
E. W.
Usadi
, and
P. B.
Davies
,
J. Phys. Chem. B
106
,
5461
(
2002
).
28.
S. J.
McGall
,
P. B.
Davies
, and
D. J.
Neivandt
,
J. Phys. Chem. B
108
,
16030
(
2004
).
29.
Y.
Tong
,
Y.
Zhao
,
N.
Li
,
M.
Osawa
,
P. B.
Davies
, and
S.
Ye
,
J. Chem. Phys
133
,
034704
(
2010
).
30.
Y.
Tong
,
Y.
Zhao
,
N.
Li
,
Y.
Ma
,
M.
Osawa
,
P. B.
Davies
, and
S.
Ye
,
J. Chem. Phys
133
,
034705
(
2010
).
31.
G.
Li
,
A.
Dhinojwala
, and
M. S.
Yeganeh
,
J. Phys. Chem. C
115
,
7554
(
2011
).
32.
A. P.
Moon
,
R.
Pandey
,
J. A.
Bender
,
D. E.
Cotton
,
B. A.
Renard
, and
S. T.
Roberts
,
J. Phys. Chem. C
121
,
18653
(
2017
).
33.
X.
Li
,
B.
Li
,
X.
Zhang
,
C.
Li
,
Z.
Guo
,
D.
Zhou
, and
X.
Lu
,
Macromolecules
49
,
3116
(
2016
).
34.
X.
Lu
,
M. L.
Clarke
,
D.
Li
,
X.
Wang
,
G.
Xue
, and
Z.
Chen
,
J. Phys. Chem. C
115
,
13759
(
2011
).
35.
P. T.
Wilson
,
K. A.
Briggman
,
W. E.
Wallace
,
J. C.
Stephenson
, and
L. J.
Richter
,
Appl. Phys. Lett.
80
,
3084
(
2002
).
36.
C.
Hirose
,
H.
Ishida
,
K.
Iwatsu
,
N.
Watanabe
,
J.
Kubota
,
A.
Wada
, and
K.
Domen
,
J. Chem. Phys.
108
,
5948
(
1998
).
37.
P.
Yeh
,
Optical Waves in Layered Media
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
1988
), Vol. 95.
38.
39.
W. R.
FitzGerald
,
K. C.
Jena
, and
D. K.
Hore
,
J. Mol. Struct.
1084
,
368
(
2014
).
40.
E. H. G.
Backus
,
N.
Garcia-Araez
,
M.
Bonn
, and
H. J.
Bakker
,
J. Chem. Phys. C
116
,
23351
(
2012
).
41.
D.
Wilk
,
D.
Johannsmann
,
C.
Stanners
, and
Y.
Shen
,
Phy. Rev. B
51
,
10057
(
1995
).
42.
J.
Wang
,
Z.
Paszti
,
M. A.
Even
, and
Z.
Chen
,
J. Phys. Chem. B
108
,
3625
(
2004
).
43.
M.
Ramsay
,
C.
Beutier
,
G. B.
McGarvey
, and
D. K.
Hore
,
J. Chem. Phys.
150
,
014702
(
2019
).
44.
Y.
Otsuki
,
T. S. T.
Ishiyama
,
A.
Morita
,
K.
Watanabe
, and
Y.
Matsumoto
,
Phys. Rev. B
96
,
115405
(
2017
).
45.
P.
Yeh
et al.,
Optical Waves in Layered Media
(
Wiley New York
,
New York
,
1988
), Vol. 95.
46.
D. E.
Cotton
and
S. T.
Roberts
,
J. Chem. Phys.
154
,
114704
(
2021
).
47.
Y. R.
Shen
,
Fundamentals of Sum-Frequency Spectroscopy
(
Cambridge University
,
Cambridge
,
2016
).
48.
D.-S.
Zheng
,
Y.
Wang
,
A.-A.
Liu
, and
H.-F.
Wang
,
Int. Rev. Phys. Chem.
27
,
629
(
2008
).
49.
H.
Ui
,
A.
Tomioka
,
T.
Nishiwaki
, and
K.
Miyano
,
J. Chem. Phys.
101
,
6430
(
1994
).
50.
S.
Yamaguchi
,
K.
Shiratori
,
A.
Morita
, and
T.
Tahara
,
J. Chem. Phys.
134
,
184705
(
2011
).
51.
S.
Sun
,
C.
Tian
, and
Y. R.
Shen
,
Proc. Nat. Acad. Sci. U.S.A.
112
,
5883
(
2015
).
52.
H.
Held
,
A. I.
Lvovsky
,
X.
Wei
, and
Y. R.
Shen
,
Phys. Rev. B
66
,
205110
(
2002
).
53.
D.
Maikhuri
,
S. P.
Rurohit
, and
K. C.
Mathur
,
AIP Adv.
5
,
047115
(
2015
).
54.
X.
Wei
,
S.-C.
Hong
,
A. I.
Lvovsky
,
H.
Held
, and
Y. R.
Shen
,
J. Phys. Chem. B
104
,
3349
(
2000
).
55.
K.
Matsuzaki
,
S.
Nihonyanagi
,
S.
Yamaguchi
,
T.
Nagata
, and
T.
Tahara
,
J. Phys. Chem. Lett.
4
,
1654
(
2013
).
56.
R.
Zheng
,
W. M.
Weo
, and
Q.
Shi
,
Phys. Chem. Chem. Phys.
17
,
9068
(
2015
).
57.
M. S.
Azam
,
C.
Cai
, and
D. K.
Hore
,
J. Phys. Chem. C
123
,
23535
(
2019
).
58.
We will later see that the vibrational mode that we are studying in SFG, the symmetric CH 3 stretch at 2908 cm 1, is relatively weak in the IR; Beer’s law prediction shows that the beam is hardly attenuated in this region. The effects of thin film interference are then even more important, as attenuation is minimal when multiple passes are made upon reflecting inside the film.
59.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 4th ed. (
Pergamon
,
Oxford
,
1970
).
60.
E.
Hecht
and
A.
Zajac
,
Optics
(
Addision-Wesley
,
Reading, MA
,
1979
).
61.
We note that there are slightly more compact ways of writing Eq. (13) that make use of some identities, but this form highlights the simplicity of its derivation.
62.
P. H.
Axelsen
and
M. J.
Citra
,
Prog. Biophys. Mol. Biol.
66
,
227
(
1996
).
63.
W. N.
Hansen
,
J. Opt. Soc. Am.
58
,
380
(
1968
).
64.
A. D.
Rich
and
D. J.
Jeffrey
,
SIGSAM Bull.
30
,
25
(
1996
).
65.
T. E.
Hull
,
T. F.
Fairgrieve
, and
P. T. P.
Tang
,
ACM Trans. Math. Software
23
,
299
(
1997
).
66.
We have in fact encountered this situation in model results that we presented in Ref. 57. This resulted in the plots of field magnitude versus thickness having maxima and minima at the incorrect thickness values. The 2D results in Ref. 57 were correct since a different arcsine evaluation method was used for that code.
67.
In cases where dove prisms or flat windows are used, one must calculate the incident angles by first considering refraction into the material that we are here calling phase 1. In this case, one should also take care if phase 1 is not sufficiently transparent. For example, the commonly used IR-grade fused silica Corning 7979 benefits from some transmission correction on account of absorption for IR wavenumbers in the range 2800–3000 cm 1.
68.
I. H.
Malitson
,
J. Opt. Soc. Am.
55
,
1205
(
1965
).
69.
F.
Schneider
,
J.
Draheim
,
R.
Kamberger
, and
U.
Wallrabe
,
Sens. Actuators A
151
,
95
(
2009
).
70.
M. R.
Querry
, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” Technical Report 88009, 1987.
71.
Dow Corning Corporation, “Sylgard 184 silicone elastomer product information,” Technical Report, 1999.
72.
C.
Cai
,
M. S.
Azam
, and
D. K.
Hore
,
J. Phys. Chem. C
125
,
12382
(
2021
).
73.
W.-C.
Yang
and
D. K.
Hore
,
J. Chem. Phys.
149
,
174703
(
2018
).
74.
C.
Cai
,
M. S.
Azam
, and
D. K.
Hore
,
J. Phys. Chem. C
125
,
22214
(
2021
).
75.
Z.
Wan
,
M. S.
Azam
,
S.
Wyatt
,
K.
Ramsay
,
J.
Korner
,
K. S.
Elvira
,
R.
Padmawar
,
D.
Varela
, and
D. K.
Hore
,
Langmuir
37
,
9597
(
2021
).
76.
N.
Sultanova
,
S.
Kasarova
, and
I.
Kokolov
,
Acta Phys. Polonica A
116
,
585
(
2009
).
77.
X.
Zhang
,
J.
Qiu
,
X.
Li
,
J.
Zhao
, and
L.
Liu
,
Appl. Opt.
59
,
2337
(
2020
).
78.
X.
Zhang
,
J.
Qiu
,
J.
Zhao
,
X.
Li
, and
L.
Liu
,
J. Quant. Spectrosc. Radiat. Transfer
252
,
107063
(
2020
).
You do not currently have access to this content.