Sum frequency generation vibrational spectroscopy (SFG-VS) is an intrinsically surface-selective vibrational spectroscopic technique based on the second-order nonlinear optical process. Since its birth in the 1980s, SFG-VS has been used to solve interfacial structure and dynamics in a variety of research fields including chemistry, physics, materials sciences, biological sciences, environmental sciences, etc. Better understanding of SFG-VS instrumentation is no doubt an essential step to master this sophisticated technique. To address this need, here we will present a Tutorial with respect to the classification, setup layout, construction, operation, and data processing about SFG-VS. We will focus on the steady state Ti:sapphire based broad bandwidth SFG-VS system and use it as an example. We hope this Tutorial is beneficial for newcomers to the SFG-VS field and for people who are interested in using SFG-VS technique in their research.

2.
3.
C.
Hirose
,
N.
Akamatsu
, and
K.
Domen
,
Appl. Spectrosc.
46
,
1051
(
1992
).
4.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
,
Phys. Rev. B
59
,
12632
(
1999
).
5.
D.
Simonelli
and
M. J.
Shultz
,
J. Chem. Phys.
112
,
6804
(
2000
).
6.
J.
Wang
,
M. L.
Clarke
, and
Z.
Chen
,
Anal. Chem.
76
,
2159
(
2004
).
7.
A. J.
Moad
and
G. J.
Simpson
,
J. Phys. Chem. B
108
,
3548
(
2004
).
8.
H.-F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B.-H.
Wu
,
Int. Rev. Phys. Chem.
24
,
191
(
2005
).
9.
A. G.
Lambert
,
P. B.
Davies
, and
D. J.
Neivandt
,
Appl. Spectrosc. Rev.
40
,
103
(
2005
).
10.
H.-F.
Wang
,
L.
Velarde
,
W.
Gan
, and
L.
Fu
,
Annu. Rev. Phys. Chem.
66
,
189
(
2015
).
11.
F.
Tang
,
T.
Ohto
,
S.
Sun
,
J. R.
Rouxel
,
S.
Imoto
,
E. H. G.
Backus
,
S.
Mukamel
,
M.
Bonn
, and
Y.
Nagata
,
Chem. Rev.
120
,
3633
(
2020
).
12.
J. D.
Pickering
,
M.
Bregnhoj
,
A. S.
Chatterley
,
M. H.
Rasmussen
,
K.
Strunge
, and
T.
Weidner
,
Biointerphases
17
,
011201
(
2022
).
13.
M. J.
Shultz
,
C.
Schnitzer
,
D.
Simonelli
, and
S.
Baldelli
,
Int. Rev. Phys. Chem.
19
,
123
(
2000
).
14.
J.
Wang
,
X. Y.
Chen
,
M. L.
Clarke
, and
Z.
Chen
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
4978
(
2005
).
15.
E. C. Y.
Yan
,
L.
Fu
,
Z.
Wang
, and
W.
Liu
,
Chem. Rev.
114
,
8471
(
2014
).
16.
L. M.
Haupert
and
G. J.
Simpson
,
Annu. Rev. Phys. Chem.
60
,
345
(
2009
).
17.
E. H. G.
Backus
,
J. D.
Cyran
,
M.
Grechko
,
Y.
Nagata
, and
M.
Bonn
,
J. Phys. Chem. A
122
,
2401
(
2018
).
18.
Y.
Rao
,
Y. Q.
Qian
,
G. H.
Deng
,
A.
Kinross
,
N. J.
Turro
, and
K. B.
Eisenthal
,
J. Chem. Phys.
150
,
094709
(
2019
).
19.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
Chem. Rev.
117
,
10665
(
2017
).
20.
X. D.
Zhu
,
H.
Suhr
, and
Y.-R.
Shen
,
J. Opt. Soc. Am. B
3
,
252
(
1986
).
21.
X. D.
Zhu
,
H.
Suhr
, and
Y. R.
Shen
,
Phys. Rev. B
35
,
3047
(
1987
).
22.
Y. R.
Shen
and
V.
Ostroverkhov
,
Chem. Rev.
106
,
1140
(
2006
).
23.
R. D.
Wampler
,
A. J.
Moad
,
C. W.
Moad
,
R.
Heiland
, and
G. J.
Simpson
,
Acc. Chem. Res.
40
,
953
(
2007
).
24.
26.
C. M.
Johnson
and
S.
Baldelli
,
Chem. Rev.
114
,
8416
(
2014
).
27.
C. Z.
Li
,
J.
Yang
,
F. H.
Su
,
J. J.
Tan
,
Y.
Luo
, and
S. J.
Ye
,
Nat. Commun.
11
,
5481
(
2020
).
28.
S.
Hosseinpour
,
S. J.
Roeters
,
M.
Bonn
,
W.
Peukert
,
S.
Woutersen
, and
T.
Weidner
,
Chem. Rev.
120
,
3420
(
2020
).
29.
T. Y.
Lu
,
W.
Guo
,
P. M.
Datar
,
Y.
Xin
,
E. N. G.
Marsh
, and
Z.
Chen
,
Chem. Sci.
13
,
975
(
2022
).
30.
B.
Siritanaratkul
,
C.
Eagle
, and
A. J.
Cowan
,
Acc. Chem. Res.
55
,
955
(
2022
).
31.
G.
Ma
,
J.
Liu
,
L.
Fu
, and
E. C. Y.
Yan
,
Appl. Spectrosc.
63
,
528
(
2009
).
32.
J. D.
Pickering
,
M.
Bregnhoj
,
A. S.
Chatterley
,
M. H.
Rasmussen
,
S. J.
Roeters
,
K.
Strunge
, and
T.
Weidner
,
Biointerphases
17
,
011202
(
2022
).
33.
A. P.
Carpenter
and
J. E.
Baio
,
Biointerphases,
17
,
031201
(
2022
).
34.
B.
Doughty
,
L.
Lin
,
U. I.
Premadasa
, and
Y.-Z.
Ma
,
Biointerphases
17
,
021201
(
2022
).
35.
S.
Hosseinpour
,
Biointerphases
17
,
031203
(
2022
).
36.
D. K.
Hore
,
J. L.
King
,
F. G.
Moore
,
D. S.
Alavi
,
M. Y.
Hamamoto
, and
G. L.
Richmond
,
Appl. Spectrosc.
58
,
1377
(
2004
).
37.
S.
Schrodle
and
G. L.
Richmond
,
Appl. Spectrosc.
62
,
389
(
2008
).
38.
E. W. M.
Van Der Ham
,
Q. H. F.
Vrehen
, and
E. R.
Eliel
,
Opt. Lett.
21
,
1448
(
1996
).
39.
E. W. M.
van der Ham
,
Q. H. F.
Vrehen
, and
E. R.
Eliel
,
Surf. Sci.
368
,
96
(
1996
).
40.
L. J.
Richter
,
T. P.
Petralli-Mallow
, and
J. C.
Stephenson
,
Opt. Lett.
23
,
1594
(
1998
).
41.
E. L.
Hommel
,
G.
Ma
, and
H. C.
Allen
,
Anal. Sci.
17
,
1325
(
2001
).
42.
G.
Ma
and
H. C.
Allen
,
J. Phys. Chem. B
107
,
6343
(
2003
).
43.
L.
Velarde
,
X.-Y.
Zhang
,
Z.
Lu
,
A. G.
Joly
,
Z.
Wang
, and
H.-F.
Wang
,
J. Chem. Phys.
135
,
241102
(
2011
).
44.
A. N.
Bordenyuk
and
A. V.
Benderskii
,
J. Chem. Phys.
122
,
134713
(
2005
).
45.
O.
Esenturk
and
R. A.
Walker
,
J. Chem. Phys.
125
,
174701
(
2006
).
46.
Y.
Rao
,
M.
Comstock
, and
K. B.
Eisenthal
,
J. Phys. Chem. B
110
,
1727
(
2006
).
47.
A. B.
Voges
,
H. A.
Al-Abadleh
,
M. J.
Musorrafiti
,
P. A.
Bertin
,
S. T.
Nguyen
, and
F. M.
Geiger
,
J. Phys. Chem. B
108
,
18675
(
2004
).
48.
A.
Lagutchev
,
S. A.
Hambir
, and
D. D.
Dlott
,
J. Phys. Chem. C
111
,
13645
(
2007
).
49.
E. L.
Hommel
and
H. C.
Allen
,
Anal. Sci.
17
,
137
(
2001
).
50.
H.
Maekawa
,
S. K. K.
Kumar
,
S. S.
Mukherjee
, and
N.-H.
Ge
,
J. Phys. Chem. B
125
,
9507
(
2021
).
51.
D.
Gupta
,
L.
Wang
,
L. M.
Hanssen
,
J. J.
Hsia
, and
R. U.
Datla
,
NIST Spec. Publ.
260–122
,
45
(
1995
).
52.
Z.
Heiner
,
V.
Petrov
, and
M.
Mero
,
APL Photonics
2
,
066102
(
2017
).
53.
Z.
Heiner
,
L.
Wang
,
V.
Petrov
, and
M.
Mero
,
Opt. Express
27
,
15289
(
2019
).
54.
Z.
Heiner
,
V.
Petrov
,
V. L.
Panyutin
,
V. V.
Badikov
,
K.
Kato
,
K.
Miyata
, and
M.
Mero
,
Sci. Rep.
12
,
5082
(
2022
).
55.
T.
Nakamura
,
V. R.
Badarla
,
K.
Hashimoto
,
P. G.
Schunemann
, and
T.
Ideguchi
,
Opt. Lett.
47
,
1790
(
2022
).
56.
F.
Yesudas
,
M.
Mero
,
J.
Kneipp
, and
Z.
Heiner
,
J. Chem. Phys.
148
,
104702
(
2018
).
You do not currently have access to this content.