The plant growth-promoting rhizobacteria (PGPR) on the host plant surface play a key role in biological control and pathogenic response in plant functions and growth. However, it is difficult to elucidate the PGPR effect on plants. Such information is important in biomass production and conversion. Brachypodium distachyon (Brachypodium), a genomics model for bioenergy and native grasses, was selected as a C3 plant model; and the Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.) were chosen as representative PGPR strains. The PGPRs were introduced to the Brachypodium seed's awn prior to germination, and their possible effects on the seeding and growth were studied using different modes of time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements, including a high mass-resolution spectral collection and delayed image extraction. We observed key plant metabolic products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and auxin indole-3-acetic acid in the Brachypodium awns. Furthermore, principal component analysis and two-dimensional imaging analysis reveal that the Brachypodium awns are sensitive to the PGPR, leading to chemical composition and morphology changes on the awn surface. Our results show that ToF-SIMS can be an effective tool to probe cell-to-cell interactions at the biointerface. This work provides a new approach to studying the PGPR effects on awn and shows its potential for the research of plant growth in the future.

1.
E. J.
Gray
and
D. L.
Smith
,
Soil Biol. Biochem.
37
,
395
(
2005
).
2.
A.
Gholami
,
S.
Shahsavani
, and
S.
Nezarat
,
Int. J. Biol. Life Sci.
1
,
35
(
2009
).
3.
P. A.
Noumavo
,
E.
Kochoni
,
Y. O.
Didagbé
,
A.
Adjanohoun
,
M.
Allagbé
,
R.
Sikirou
,
E. W.
Gachomo
,
S. O.
Kotchoni
, and
L.
Baba-Moussa
,
Am. J. Plant Sci.
04
,
1013
(
2013
).
4.
S. K.
Upadhyay
,
J. S.
Singh
,
A. K.
Saxena
, and
D. P.
Singh
,
Plant Biol.
14
,
605
(
2012
).
5.
S.
Compant
,
C.
Clément
, and
A.
Sessitsch
,
Soil Biol. Biochem.
42
,
669
(
2010
).
6.
A. H.
Ahkami
,
R.
Allen White
,
P. P.
Handakumbura
, and
C.
Jansson
,
Rhizosphere
3
,
233
(
2017
).
7.
K.-B. G.
Scholthof
,
S.
Irigoyen
,
P.
Catalan
, and
K. K.
Mandadi
,
Plant Cell
30
,
1673
(
2018
).
8.
C.
Jansson
,
J.
Vogel
,
S.
Hazen
,
T.
Brutnell
, and
T.
Mockler
,
J. Exp. Bot.
69
,
3801
(
2018
).
9.
T. P.
Brutnell
,
J. L.
Bennetzen
, and
J. P.
Vogel
,
Annu. Rev. Plant Biol.
66
,
465
(
2015
).
10.
A.
Blennow
,
S. L.
Jensen
,
S. S.
Shaik
,
K.
Skryhan
,
M.
Carciofi
,
P. B.
Holm
,
K. H.
Hebelstrup
, and
V.
Tanackovic
,
Cereal Chem.
90
,
274
(
2013
).
11.
T.
Girin
,
L. C.
David
,
C.
Chardin
,
R.
Sibout
,
A.
Krapp
,
S.
Ferrario-Mery
, and
F.
Daniel-Vedele
,
J. Exp. Bot.
65
,
5683
(
2014
).
12.
J.
Draper
,
L. A. J.
Mur
,
G.
Jenkins
,
G. C.
Ghosh-Biswas
,
P.
Bablak
,
R.
Hasterok
, and
A. P. M.
Routledge
,
Plant Physiol.
127
,
1539
(
2001
).
13.
F.
Ntakirutimana
and
W.
Xie
,
Genes
10
,
573
(
2019
).
14.
T.
Yuo
,
Y.
Yamashita
,
H.
Kanamori
,
T.
Matsumoto
,
U.
Lundqvist
,
K.
Sato
,
M.
Ichii
,
S. A.
Jobling
, and
S.
Taketa
,
J. Exp. Bot.
63
,
5223
(
2012
).
15.
R.
Motzo
and
F.
Giunta
,
Aust. J. Agric. Res.
53
,
1285
(
2002
).
16.
F.
Ntakirutimana
,
B.
Xiao
,
W.
Xie
,
J.
Zhang
,
Z.
Zhang
,
N.
Wang
, and
J.
Yan
,
Plants
8
,
561
(
2019
).
17.
E. R.
Amstalden van Hove
,
D. F.
Smith
, and
R. M. A.
Heeren
,
J. Chromatogr. A
1217
,
3946
(
2010
).
18.
S.
Yoon
and
T. G.
Lee
,
Nano Converg.
5
,
24
(
2018
).
19.
Y.
Dong
,
B.
Li
,
S.
Malitsky
,
I.
Rogachev
,
A.
Aharoni
,
F.
Kaftan
,
A.
Svatos
, and
P.
Franceschi
,
Front. Plant Sci.
7
,
60
(
2016
).
20.
Y. J.
Lee
,
D. C.
Perdian
,
Z.
Song
,
E. S.
Yeung
, and
B. J.
Nikolau
,
Plant J.
70
,
81
(
2012
).
21.
J. G.
de Moraes Pontes
,
P. H.
Vendramini
,
L. S.
Fernandes
,
F. H.
de Souza
,
E. J.
Pilau
,
M. N.
Eberlin
,
R. F.
Magnani
,
N. A.
Wulff
, and
T. P.
Fill
,
Sci. Rep.
10
,
13457
(
2020
).
22.
J.
Wang
,
E.
Yang
,
P.
Chaurand
, and
V.
Raghavan
,
Food Chem.
345
,
128838
(
2021
).
23.
M. E.
Duenas
,
E. A.
Larson
, and
Y. J.
Lee
,
Front. Plant Sci.
10
,
860
(
2019
).
24.
H. M.
Heyman
and
I. A.
Dubery
,
Phytochem. Rev.
15
,
297
(
2015
).
25.
A.
Gadea
,
M.
Fanuel
,
A.-C.
Le Lamer
,
J.
Boustie
,
H.
Rogniaux
,
M.
Charrier
, and
F.
Lohezic-Le Devehat
,
Plants
9
,
70
(
2020
).
26.
M. M.
Burrell
,
C. J.
Earnshaw
, and
M. R.
Clench
,
J. Exp. Bot.
58
,
757
(
2007
).
27.
D.
Veličković
 et al.,
Plant-Environ. Interactions
2
,
28
(
2021
).
28.
R. G.
Hemalatha
and
T.
Pradeep
,
J. Agric. Food Chem.
61
,
7477
(
2013
).
29.
H.
Li
,
B. K.
Smith
,
L.
Márk
,
P.
Nemes
,
J.
Nazarian
, and
A.
Vertes
,
Int. J. Mass Spectrom.
377
,
681
(
2015
).
30.
B. A.
Boughton
,
D.
Thinagaran
,
D.
Sarabia
,
A.
Bacic
, and
U.
Roessner
,
Phytochem. Rev.
15
,
445
(
2016
).
31.
Q. P.
Vanbellingen
,
A.
Castellanos
,
M.
Rodriguez-Silva
,
I.
Paudel
,
J. W.
Chambers
, and
F. A.
Fernandez-Lima
,
J. Am. Soc. Mass Spectrom.
27
,
2033
(
2016
).
32.
I. S.
Gilmore
,
S.
Heiles
, and
C. L.
Pieterse
,
Annu. Rev. Anal. Chem.
12
,
201
(
2019
).
33.
H. K.
Shon
,
S.
Yoon
,
J. H.
Moon
, and
T. G.
Lee
,
Biointerphases
11
,
02A321
(
2016
).
34.
A.
Henss
,
S.-K.
Otto
,
K.
Schaepe
,
L.
Pauksch
,
K. S.
Lips
, and
M.
Rohnke
,
Biointerphases
13
,
03B410
(
2018
).
35.
Q. P.
Vanbellingen
,
N.
Elie
,
M. J.
Eller
,
S.
Della-Negra
,
D.
Touboul
, and
A.
Brunelle
,
Rapid Commun. Mass Spectrom.
29
,
1187
(
2015
).
36.
P.
Massonnet
and
R. M. A.
Heeren
,
J. Anal. At. Spectrom.
34
,
2217
(
2019
).
37.
E.
Gemperline
,
C.
Keller
, and
L.
Li
,
Anal. Chem.
88
,
3422
(
2016
).
38.
E.
Kim
,
J.
Kim
,
I.
Choi
,
J.
Lee
, and
W.-S.
Yeo
,
BMB Rep.
53
,
349
(
2020
).
39.
J. S.
Fletcher
,
Biointerphases
10
,
018902
(
2015
).
40.
S.
Fearn
,
Mater. Sci. Technol.
31
,
148
(
2015
).
41.
K.
Kuroda
,
T.
Fujiwara
,
T.
Imai
,
R.
Takama
,
K.
Saito
,
Y.
Matsushita
, and
K.
Fukushima
,
Surf. Interface Anal.
45
,
215
(
2013
).
42.
E. N.
Tokareva
,
P.
Fardim
,
A. V.
Pranovich
,
H.-P.
Fagerholm
,
G.
Daniel
, and
B.
Holmbom
,
Appl. Surf. Sci.
253
,
7569
(
2007
).
43.
S. H.
Kim
,
J.
Kim
,
Y. J.
Lee
,
T. G.
Lee
, and
S.
Yoon
,
J. Am. Soc. Mass Spectrom.
28
,
1729
(
2017
).
44.
S.
Jung
,
M.
Foston
,
M. C.
Sullards
, and
A. J.
Ragauskas
,
Energy Fuels
24
,
1347
(
2010
).
45.
A.
Seyer
,
J.
Einhorn
,
A.
Brunelle
, and
O.
Laprevote
,
Anal. Chem.
82
,
2326
(
2010
).
46.
R.
Tombolini
,
A.
Unge
,
M. E.
Davey
,
F. J.
deBruijn
, and
J. K.
Jansson
,
FEMS Microbiol. Ecol.
22
,
17
(
1997
).
47.
K.
Westerberg
,
A. M.
Elvang
,
E.
Stackebrandt
, and
J. K.
Jansson
,
Int. J. Syst. Evol. Microbiol.
50
,
2083
(
2000
).
48.
49.
L. L.
Haney
and
D. E.
Riederer
,
Anal. Chim. Acta
397
,
225
(
1999
).
50.
Y.
Zhang
,
R.
Komorek
,
J.
Son
,
S.
Riechers
,
Z.
Zhu
,
J.
Jansson
,
C.
Jansson
, and
X.-Y.
Yu
,
Analyst
146
,
5855
(
2021
).
51.
X.
Hua
,
M. J.
Marshall
,
Y.
Xiong
,
X.
Ma
,
Y.
Zhou
,
A. E.
Tucker
,
Z.
Zhu
,
S.
Liu
, and
X.-Y.
Yu
,
Biomicrofluidics
9
,
031101
(
2015
).
52.
X.-Y.
Yu
,
B.
Liu
, and
L.
Yang
,
Microfluid. Nanofluid.
15
,
725
(
2013
).
53.
Y.
Zhou
 et al.,
J. Am. Soc. Mass Spectrom.
27
,
2006
(
2016
).
54.
R.
Komorek
,
W.
Wei
,
X.
Yu
,
E.
Hill
,
J.
Yao
,
Z.
Zhu
, and
X. Y.
Yu
,
J. Vis. Exp.
126
, e55944 (
2017
).
55.
W.
Wei
,
Y.
Zhang
,
R.
Komorek
,
A.
Plymale
,
R.
Yu
,
B.
Wang
,
Z.
Zhu
,
F.
Liu
, and
X.-Y.
Yu
,
Biointerphases
12
,
05G601
(
2017
).
56.
F. M.
Green
,
I. S.
Gilmore
, and
M. P.
Seah
,
J. Am. Soc. Mass Spectrom.
17
,
514
(
2006
).
57.
D. J.
Graham
,
M. S.
Wagner
, and
D. G.
Castner
,
Appl. Surf. Sci.
252
,
6860
(
2006
).
58.
X.
Sui
,
Y.
Zhou
,
F.
Zhang
,
Y.
Zhang
,
J.
Chen
,
Z.
Zhu
, and
X.-Y.
Yu
,
Surf. Interface Anal.
50
,
927
(
2018
).
59.
J.
Son
,
Y.
Shen
,
J.
Yao
,
D.
Paynter
, and
X.-Y.
Yu
,
Chemosphere
236
,
124345
(
2019
).
60.
P. A.
Ndakidemi
and
F. D.
Dakora
,
Funct. Plant Biol.
30
,
729
(
2003
).
61.
N. D.
Martini
,
D. R. P.
Katerere
, and
J. N.
Eloff
,
J. Ethnopharmacol.
93
,
207
(
2004
).
62.
S. M.
Mandal
,
D.
Chakraborty
, and
S.
Dey
,
Plant Signal. Behav.
5
,
359
(
2010
).
63.
K.
Staman
,
U.
Blum
,
F.
Louws
, and
D.
Robertson
,
J. Chem. Ecol.
27
,
807
(
2001
).
64.
F.
Bekkara
,
M.
Jay
,
M. R.
Viricel
, and
S.
Rome
,
Plant Soil
203
,
27
(
1998
).
65.
A. A.
Millar
,
M. A.
Smith
, and
L.
Kunst
,
Trends Plant Sci.
5
,
95
(
2000
).
66.
M. K.
Passarelli
and
N.
Winograd
,
Biochim. Biophys. Acta
1811
,
976
(
2011
).
67.
T.
Leefmann
,
C.
Heim
,
A.
Kryvenda
,
S.
Siljeström
,
P.
Sjövall
, and
V.
Thiel
,
Org. Geochem.
57
,
23
(
2013
).
68.
K. M.
Lwin
,
M. M.
Myint
,
T.
Tar
, and
W. Z. M.
Aung
,
Eng. J.
16
,
137
(
2012
).
69.
M. S.
Greenwood
,
S.
Shaw
,
J. R.
Hillman
,
A.
Ritchie
, and
M. B.
Wilkins
,
Planta
108
,
179
(
1972
).
70.
Y.
Ding
,
Y.
Zhou
,
J.
Yao
,
C.
Szymanski
,
J.
Fredrickson
,
L.
Shi
,
B.
Cao
,
Z.
Zhu
, and
X.-Y.
Yu
,
Anal. Chem.
88
,
11244
(
2016
).
71.
M.
Chen
,
L.
Xuan
,
Z.
Wang
,
L.
Zhou
,
Z.
Li
,
X.
Du
,
E.
Ali
,
G.
Zhang
, and
L.
Jiang
,
Plant Physiol.
165
,
905
(
2014
).
72.
A. B.
Rahamatalla
,
E. E.
Babiker
,
A. G.
Krishna
, and
A. H.
El Tinay
,
Plant Foods Hum. Nutr.
56
,
385
(
2001
).
73.
A.
Adamczak
,
M.
Ozarowski
, and
T. M.
Karpinski
,
J. Clin. Med.
9
,
109
(
2020
).
74.
A.
Basile
,
S.
Sorbo
,
S.
Giordano
,
L.
Ricciardi
,
S.
Ferrara
,
D.
Montesano
,
R. C.
Cobianchi
,
M. L.
Vuotto
, and
L.
Ferrara
,
Fitoterapia
71
,
S110
(
2000
).
75.
S.
Samajdar
,
S.
Mukherjee
, and
P. P.
Das
,
Int. J. Appl. Pharm. Sci. Res.
3
,
12
(
2018
).
76.
S.
Muzaffar
,
B.
Ali
, and
N. A.
Wani
,
Int. J. Life Sci. Bt Pharm. Res.
1
,
50
(
2012
).
77.
M.
Miransari
and
D. L.
Smith
,
Environ. Exp. Bot.
99
,
110
(
2014
).
78.
D.
Egamberdieva
,
Acta Physiol. Plant.
31
,
861
(
2009
).
79.
D.
Touboul
and
A.
Brunelle
,
Bioanalysis
8
,
367
(
2016
).
80.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001949 for additional details including figures, tables, and associated references to accompany the main text.

Supplementary Material

You do not currently have access to this content.