Breast cancer is the most common type of cancer observed in women. Communication with the tumor microenvironment allows invading breast cancer cells, such as triple negative breast cancer cells, to adapt to specific substrates. The substrate topography modulates the cellular behavior among other factors. Several different materials and micro/nanofabrication techniques have been employed to develop substrates for cell culture. Silicon-based substrates present a lot of advantages as they are amenable to a wide range of processing techniques and they permit rigorous control over the surface structure. We investigate and compare the response of the triple negative breast cancer cells (MDA-MB-231) on laser-patterned silicon substrates with two different topographical scales, i.e., the micro- and the nanoscale, in the absence of any other biochemical modification. We develop silicon surfaces with distinct morphological characteristics by employing two laser systems with different pulse durations (nanosecond and femtosecond) and different processing environments (vacuum, SF6 gas, and water). Our findings demonstrate that surfaces with microtopography are repellent, while those with nanotopography are attractive for MDA-MB-231 cell adherence.

1.
F.
Bray
,
J.
Ferlay
,
I.
Soerjomataram
,
R. L.
Siegel
,
L. A.
Torre
, and
A.
Jemal
,
CA Cancer J. Clin.
68
,
394
(
2018
).
2.
Z.
Anastasiadi
,
G. D.
Lianos
,
E.
Ignatiadou
,
H. V.
Harissis
, and
M.
Mitsis
,
Updates Surg.
69
,
313
(
2017
).
3.
M. M.
Shenouda
 et al.,
Breast Cancer Res.
19
,
76
(
2017
).
4.
5.
M.-H.
You
,
M. K.
Kwak
,
D.-H.
Kim
,
K.
Kim
,
A.
Levchenko
,
D.-Y.
Kim
, and
K.-Y.
Suh
,
Biomacromolecules
11
,
1856
(
2010
).
6.
J.
Reichert
,
S.
Brückner
,
H.
Bartelt
, and
K. D.
Jandt
,
Adv. Eng. Mater.
9
,
1104
(
2007
).
7.
R. G.
Flemming
,
C. J.
Murphy
,
G. A.
Abrams
,
S. L.
Goodman
, and
P. F.
Nealey
,
Biomaterials
20
,
573
(
1999
).
8.
U.
Meyer
,
A.
Büchter
,
H. P.
Wiesmann
,
U.
Joos
, and
D. B.
Jones
,
Eur. Cells Mater. J.
9
,
39
(
2005
).
9.
F.
Gentile
, “
Nanotopographical control of cell assembly into supracellular structures
,” in
Nanomaterials for Advanced Biological Applications
, edited by
M.
Rahmandoust
and
M.
Ayatollahi
(
Springer,
Cham
,
2019
), p.
104
.
10.
D. W.
Hutmacher
,
T. B. F.
Woodfield
, and
P. D.
Dalton
, “
Scaffold design and fabrication
,” in
Tissue Engineering
, edited by
C. A.
Van Blitterswijk
and
J.
De Boer
(
Academic
,
Boston
,
2014
), pp.
311
346
.
11.
T.
Lu
,
Y.
Li
, and
T.
Chen
,
Int. J. Nanomed.
8
,
337
(
2013
).
12.
G.
Perozziello
 et al.,
Micro Nanosyst.
2
,
227
(
2010
).
13.
A. T.
Nguyen
,
S. R.
Sathe
, and
E. K. F.
Yim
,
J. Phys.: Condens. Matter
28
,
183001
(
2016
).
14.
C.
Leclech
and
C.
Villard
,
Front. Bioeng. Biotechnol.
8
,
551505
(
2020
).
15.
M.
Unal
 et al.,
Nanobiomedicine
1
,
5
(
2014
).
16.
J. L.
Charest
,
A. J.
Garcia
, and
W. P.
King
,
Biomaterials
28
,
2202
(
2007
).
17.
E. K. F.
Yim
,
S. W.
Pang
, and
K. W.
Leong
,
Exp. Cell Res.
313
,
1820
(
2007
).
18.
J.
Lu
,
M. P.
Rao
,
N. C.
MacDonald
,
D.
Khang
, and
T. J.
Webster
,
Acta Biomater.
4
,
192
(
2008
).
19.
A. I.
Teixeira
,
G. A.
Abrams
,
P. J.
Bertics
,
C. J.
Murphy
, and
P. F.
Nealey
,
J. Cell Sci.
116
,
1881
(
2003
).
20.
N. W.
Karuri
,
S.
Liliensiek
,
A. I.
Teixeira
,
G.
Abrams
,
S.
Campbell
,
P. F.
Nealey
, and
C. J.
Murphy
,
J. Cell Sci.
117
,
3153
(
2004
).
21.
A. M. P.
Turner
,
N.
Dowell
,
S. W. P.
Turner
,
L.
Kam
,
M.
Isaacson
,
J. N.
Turner
,
G. H.
Craighead
, and
W.
Shain
,
J. Biomed. Mater. Res.
51
,
430
(
2000
).
22.
S.
Cai
,
C.
Wu
,
W.
Yang
,
W.
Liang
,
H.
Yu
, and
L.
Liu
,
Nanotechnol. Rev.
9
,
971
(
2020
).
23.
J.
Mai
,
C.
Sun
,
S.
Li
, and
X.
Zhang
,
Biomed. Microdevices
9
,
523
(
2007
).
24.
E.
Yim
,
R.
Reano
,
S.
Pang
,
A.
Yee
,
C.
Chen
, and
K.
Leong
,
Biomaterials
26
,
5405
(
2005
).
25.
T.
Tzvetkova-Chevolleau
,
A.
Stephanou
,
D.
Fuard
,
J.
Ohayon
,
P.
Schiavone
, and
P.
Tracqui
,
Biomaterials
29
,
1541
(
2008
).
26.
H.
Miyoshi
,
J.
Ju
,
S. M.
Lee
,
D. J.
Cho
,
J. S.
Ko
,
Y.
Yamagata
, and
T.
Adachi
,
Biomaterials
31
,
8539
(
2010
).
27.
V.
Vogel
,
Annu. Rev. Biophys. Biomol. Struct.
35
,
459
(
2006
).
28.
S. C.
Wuang
,
B.
Ladoux
, and
C. T.
Lim
,
Cell. Mol. Bioeng.
4
,
466
(
2011
).
29.
V.
Vogel
and
M.
Sheetz
,
Nat. Rev. Mol. Cell Biol.
7
,
265
(
2006
).
30.
N.
Wang
,
J. P.
Butler
, and
D. E.
Ingber
,
Science
260
,
1124
(
1993
).
31.
H. J.
Jeon
,
C. J.
Simon
, Jr.
, and
G. H.
Kim
,
J. Biomed. Mater. Res.
102
,
1580
(
2014
).
32.
J. D.
Kiang
,
J. H.
Wen
,
J. C.
del Alamo
, and
A. J.
Engler
,
J. Biomed. Mater. Res. A
101A
,
2313
(
2013
).
33.
C.
Fedele
 et al.,
Sci. Rep.
10
,
15329
(
2020
).
34.
M.
Mrksich
,
Cell. Mol. Life Sci.
54
,
653
(
1998
).
35.
W.
Sun
,
J. E.
Puzas
,
T.-J.
Sheu
,
X.
Liu
, and
P. M.
Fauchet
,
Adv. Mater.
19
,
921
(
2007
).
36.
J.
Hernández-Montelongo
,
A.
Muñoz-Noval
,
J.
García-Ruíz
,
V.
Torres-Costa
,
R. J.
Martín-Palma
, and
M.
Manso-Silván
,
Front. Bioeng. Biotechnol.
3
,
60
(
2015
).
37.
S.
Kaihara
,
J.
Borenstein
,
R.
Koka
,
S.
Lalan
,
E. R.
Ochoa
,
M.
Ravens
,
H.
Pien
,
B.
Cunningham
, and
J. P.
Vacanti
,
Tissue Eng.
6
,
105
(
2000
).
38.
J. M.
Lopacinska
 et al.,
Nanoscale
4
,
3739
(
2012
).
39.
F.
Gentile
 et al.,
ACS Appl. Mater. Interfaces
4
,
2903
(
2012
).
40.
Z.
Berces
,
J.
Pomothy
,
A. C.
Horváth
,
T.
Kohidi
,
E.
Benyei
,
Z.
Fekete
,
E.
Madarasz
, and
A.
Pongracz
,
J. Neural Eng.
15
,
056030
(
2018
).
41.
P.
Vandrangi
,
S. C.
Gott
,
R.
Kozaka
,
V. G. J.
Rodgers
, and
M. P.
Rao
,
PLoS One
9
,
e111465
(
2014
).
42.
P.
Formentin
,
M.
Alba
,
U.
Catalan
,
S.
Fernandez-Castillejo
,
J.
Pallares
,
R.
Sola
, and
L. F.
Marsal
,
Nanoscale Res. Lett.
9
,
421
(
2014
).
43.
A.
Tzur-Balter
,
G.
Shtenberg
, and
E.
Segal
,
Rev. Chem. Eng.
31
,
193
(
2015
).
44.
M. L.
Coluccio
 et al.,
Pharmaceutics
12
,
481
(
2020
).
45.
M.
Nikkhah
,
J. S.
Strobl
, and
M.
Agah
,
Biomed. Microdevices
11
,
429
(
2009
).
46.
P.
Premnath
,
K.
Venkatakrishnan
, and
B.
Tan
,
Sci. Rep.
5
,
10826
(
2015
).
47.
A.
Ranella
,
M.
Barberoglou
,
S.
Bakogianni
,
C.
Fotakis
, and
E.
Stratakis
,
Acta Biomater.
6
,
2711
(
2010
).
48.
Y.
Hosseini
,
S.
Soltanian-Zadeh
,
V.
Srinivasaraghavan
, and
M.
Agah
,
J. Microelectromech. Syst.
26
,
308
(
2017
).
49.
Ş
Comşa
,
A. M.
Cîmpean
, and
M.
Raica
,
Anticancer Res.
35
,
3147
(
2015
).
50.
X.
Dai
,
H.
Cheng
,
Z.
Bai
, and
J.
Li
,
J. Cancer
8
,
3131
(
2017
).
51.
M.
Nikkhah
,
J. S.
Strobl
,
E. M.
Schmelz
,
P. C.
Roberts
,
H.
Zhou
, and
M.
Agah
,
Biomaterials
32
,
7625
(
2011
).
52.
M.
Nikkhah
,
J. S.
Strobl
,
V.
Srinivasaraghavan
, and
M.
Agah
,
IEEE Sens. J.
13
,
1125
(
2013
).
53.
G.
Mazzini
 et al.,
IEEE Trans. NanoBiosci.
14
,
797
(
2015
).
54.
G.
Amoako
,
Appl. Phys. Res.
11
,
1
(
2019
).
55.
D. H.
Lowndes
,
J. D.
Fowlkes
, and
A. J.
Pedraza
,
Appl. Surf. Sci.
154
,
647
(
2000
).
56.
B. R.
Tull
,
J. E.
Carey
,
E.
Mazur
,
J. P.
McDonald
, and
S. M.
Yalisove
,
MRS Bull.
31
,
626
(
2006
).
57.
Ch.
Yiannakou
,
Ch.
Simitzi
,
A.
Manousaki
,
C.
Fotakis
,
A.
Ranella
, and
E.
Stratakis
,
Biofabrication
9
,
025024
(
2017
).
58.
C.
Simitzi
 et al.,
Biomater. Sci.
6
,
1469
(
2018
).
59.
M.
Kanidi
,
A.
Papagiannopoulos
,
A.
Matei
,
M.
Dinescu
,
S.
Pispas
, and
M.
Kandyla
,
Appl. Surf. Sci.
527
,
146841
(
2020
).
60.
G.
Chatzigiannakis
,
A.
Jaros
,
R.
Leturcq
,
J.
Jungclaus
,
T.
Voss
,
S.
Gardelis
, and
M.
Kandyla
,
ACS Appl. Electron. Mater.
2
,
2819
(
2020
).
61.
C.
Simitzi
,
E.
Stratakis
,
C.
Fotakis
,
I.
Athanassakis
, and
A.
Ranella
,
J. Tissue Eng. Regen. Med.
9
,
424
(
2015
).
62.
C.
Simitzi
,
P.
Efstathopoulos
,
A.
Kourgiantaki
,
A.
Ranella
,
I.
Charalampopoulos
,
C.
Fotakis
,
I.
Athanassakis
,
E.
Stratakis
, and
A.
Gravanis
,
Biomaterials
67
,
115
(
2015
).
63.
C. H.
Crouch
,
J. E.
Carey
,
M.
Shen
,
E.
Mazur
, and
F. Y.
Genin
,
Appl. Phys. A
79
,
1635
(
2004
).
64.
C. H.
Crouch
,
J. E.
Carey
,
J. M.
Warrender
,
M. J.
Aziz
,
M.
Shen
,
E.
Mazur
, and
F. Y.
Genin
,
Appl. Phys. Lett.
84
,
1850
(
2004
).
65.
A.
Cavalleri
,
K.
Sokolowski-Tinten
,
J.
Bialkowski
,
M.
Schreiner
, and
D.
Von der Linde
,
J. Appl. Phys.
85
,
3301
(
1999
).
66.
M.
Ermis
,
D.
Akkaynak
,
P.
Chen
,
U.
Demirci
, and
V.
Hasirci
,
Sci. Rep.
6
,
36917
(
2016
).
67.
M.
Kanidi
 et al.,
J. Phys. Chem. C
123
,
3076
(
2019
).
68.
D. G.
Kotsifaki
,
M.
Kandyla
, and
P. G.
Lagoudakis
,
Appl. Phys. Lett.
107
,
211111
(
2015
).
69.
M.
Shen
,
J. E.
Carey
,
C. H.
Crouch
,
M.
Kandyla
,
H. A.
Stone
, and
E.
Mazur
,
Nano Lett.
8
,
2087
(
2008
).
70.
D. G.
Georgiadou
,
M.
Ulmeanu
,
M.
Kompitsas
,
P.
Argitis
, and
M.
Kandyla
,
Mater. Res. Express
1
,
045902
(
2014
).
71.
B. D.
Riehl
,
E.
Kim
,
T.
Bouzid
, and
J. Y.
Lim
,
Front. Bioeng. Biotechnol.
8
,
608526
(
2021
).
72.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001564 for details of statistical analysis.

Supplementary Material

You do not currently have access to this content.