There are many reports of antimicrobial coatings bearing immobilized active agents on surfaces; however, strong analytical evidence is required to verify that the agents are indeed covalently attached to the surface. In the absence of such evidence, antimicrobial activity could result from a release of active agents. We report a detailed assessment of antifungal surface coatings prepared using covalent attachment chemistries, with the aim of establishing a set of instrumental and biological evidence required to convincingly demonstrate antimicrobial activity due to nonreleasing, surface active compounds and to exclude the alternate possibility of activity due to release. The strongest biological evidence initially supporting permanent antifungal activity was the demonstration of the ability to reuse samples in multiple, sequential pathogen challenges. However, additional supporting evidence from washing studies and instrumental analysis is also required to probe the possibility of gradual desorption of strongly physisorbed compounds versus covalently attached compounds. Potent antifungal surface coatings were prepared from approved pharmaceutical compounds from the echinocandin drug class (caspofungin, anidulafungin, and micafungin) and assessed by microbiological tests and instrumental methods. Carbonyl diimidazole linking chemistry enabled covalent attachment of caspofungin, anidulafungin, and micafungin to plasma polymer surfaces, with antifungal surface activity likely caused by molecular orientations that present the lipophilic tail toward interfacing fungal cells. This study demonstrates the instrumental and biological evidence required to convincingly ascertain activity due to nonreleasing, surface active compounds and summarize these as three criteria for assessing other reports on surface-immobilized antimicrobial compounds.

1.
F. C.
Odds
,
A. J. P.
Brown
, and
N. A. R.
Gow
,
Trends Icrobiol.
11
,
272
(
2003
).
2.
D. W.
Denning
,
J. Antimicrob. Chemother.
49
,
889
(
2002
).
3.
N. P.
Wiederhold
and
R. E.
Lewis
,
Expert Opin. Invest. Drugs
12
,
1313
(
2003
).
4.
5.
A. W.
David
, Foyes Principles of Medicinal Chemistry (Wolters Kluwer, 2012).
6.
M. J.
Neal
, Medical Pharmacology at a Glance (John Wiley & Sons, 2020).
7.
C.
Giles
,
S. J.
Lamont-Friedrich
,
T. D.
Michl
,
H. J.
Griesser
, and
B. R.
Coad
,
Biotechnol. Adv.
36
,
264
(
2018
).
8.
L.
Bazina
,
A.
Maravić
,
L.
Krce
,
B.
Soldo
,
R.
Odžak
,
V. B.
Popović
,
I.
Aviani
,
I.
Primožič
, and
M.
Šprung
,
Eur. J. Med. Chem.
163
,
626
(
2019
).
9.
M. C.
Jennings
,
L. E.
Ator
,
T. J.
Paniak
,
K. P.
Minbiole
, and
W. M.
Wuest
,
Chembiochem
15
,
2211
(
2014
).
10.
D. L.
Zubris
,
K. P. C.
Minbiole
, and
W. M.
Wuest
,
Curr. Top. Med. Chem.
17
,
305
(
2017
).
11.
J.
Loontjens
,
Biomaterials Associated Infection
(
Springer
, New York,
2013
), p.
379
.
12.
E. S. D.
Ashley
,
R.
Lewis
,
J. S.
Lewis
,
C.
Martin
, and
D.
Andes
,
Clin. Infect. Dis.
43
,
S28
(
2006
).
13.
J. A. G.
Ferreira
,
J. H.
Carr
,
C. E. F.
Starling
,
M. A.
de Resende
, and
R. M.
Donlan
,
Antimicrob. Agents Chemother.
53
,
4377
(
2009
).
14.
G.
Ramage
,
K.
VandeWalle
,
S. P.
Bachmann
,
B. L.
Wickes
, and
J. L.
López-Ribot
,
Antimicrob. Agents Chemother.
46
,
3634
(
2002
).
15.
B. R.
Coad
,
S. E.
Kidd
,
D. H.
Ellis
, and
H. J.
Griesser
,
Biotechnol. Adv.
32
,
296
(
2014
).
16.
S. P.
Bachmann
,
K.
VandeWalle
,
G.
Ramage
,
T. F.
Patterson
,
B. L.
Wickes
,
J. R.
Graybill
, and
J. L.
López-Ribot
,
Antimicrob. Agents Chemother.
46
,
3591
(
2002
).
17.
S.
Kucharíková
 et al,
J. Antimicrob. Chemother.
71
,
936
(
2016
).
18.
B. R.
Coad
,
H. J.
Griesser
,
A. Y.
Peleg
, and
A.
Traven
,
PLoS Pathog.
12
,
e1005598
(
2016
).
19.
P.
Van Dijck
 et al,
Microbial Cell
5
,
300
(
2018
).
20.
J.
Sjollema
,
S. A. J.
Zaat
,
V.
Fontaine
,
M.
Ramstedt
,
R.
Luginbuehl
,
K.
Thevissen
,
J.
Li
,
H. C.
van der Mei
, and
H. J.
Busscher
,
Acta Biomater.
70
,
12
(
2018
).
21.
B. R.
Coad
,
S. J.
Lamont-Friedrich
,
L.
Gwynne
,
M.
Jasieniak
,
S. S.
Griesser
,
A.
Traven
,
A. Y.
Peleg
, and
H. J.
Griesser
,
J. Mater. Chem. B
3
,
8469
(
2015
).
22.
L. J.
Douglas
,
Rev. Iberoam. Micol.
19
,
139
(
2002
).
23.
J.
Naderi
,
C.
Giles
,
S.
Saboohi
,
H. J.
Griesser
, and
B. R.
Coad
,
J. Antimicrob. Chemother.
74
,
360
(
2019
).
24.
G.
Ramage
,
J. P.
Martinez
, and
J. L.
Lopez-Ribot
,
FEMS Yeast Res.
6
,
979
(
2006
).
25.
J.
Chandra
,
D. M.
Kuhn
,
P. K.
Mukherjee
,
L. L.
Hoyer
,
T.
McCormick
, and
M. A.
Ghannoum
,
J. Bacteriol.
183
,
5385
(
2001
).
26.
M.
Gulati
and
C. J.
Nobile
,
Microbes Infect.
18
,
310
(
2016
).
27.
G.
Ramage
,
E.
Mowat
,
B.
Jones
,
C.
Williams
, and
J.
Lopez-Ribot
,
Crit. Rev. Microbiol.
35
,
340
(
2009
).
28.
B. R.
Coad
,
T.
Scholz
,
K.
Vasilev
,
J. D.
Hayball
,
R. D.
Short
, and
H. J.
Griesser
,
ACS Appl. Mater. Interfaces
4
,
2455
(
2012
).
29.
H. J.
Griesser
,
Vacuum
39
,
485
(
1989
).
30.
D.
Briggs
, Surface Analysis of Polymers by XPS and Static SIMS (Cambridge University, 1998).
31.
M.
Jasieniak
,
D.
Graham
,
P.
Kingshott
,
L.
Gamble
, and
H. J.
Griesser
, in
Handbook of Surface and Interface Analysis
, edited by
J. P.
Riviere
and
S.
Myhra
(
CRC
, Boca Raton,
2009
), p.
529
.
32.
T. D.
Michl
,
C.
Giles
,
A. T.
Cross
,
H. J.
Griesser
, and
B. R.
Coad
,
RSC Adv.
7
,
27678
(
2017
).
33.
T. D.
Michl
,
C.
Giles
,
P.
Mocny
,
K.
Futrega
,
M. R.
Doran
,
H. A.
Klok
,
H. J.
Griesser
, and
B. R.
Coad
,
Biointerphases
12
,
05G602
(
2017
).
34.
H. J.
Griesser
and
R. C.
Chatelier
,
J. Appl. Polym. Sci.
46
,
361
(
1990
).
35.
G. T.
Hermanson
,
Bioconjugate Techniques
, 3rd ed. (
Academic
,
Boston
,
2013
), p.
259
.
36.
N.
Kehagias
,
S.
Zankovych
,
A.
Goldschmidt
,
R.
Kian
,
M.
Zelsmann
,
C. S.
Torres
,
K.
Pfeiffer
,
G.
Ahrens
, and
G.
Gruetzner
,
Superlattices Microstruct.
36
,
201
(
2004
).
37.
J.-g.
Liu
and
M.
Ueda
,
J. Mater. Chem.
19
,
8907
(
2009
).
38.
B. R.
Coad
,
K.
Vasilev
,
K. R.
Diener
,
J. D.
Hayball
,
R. D.
Short
, and
H. J.
Griesser
,
Langmuir
28
,
2710
(
2012
).
39.
J.
Naderi
,
C.
Giles
,
S.
Saboohi
,
H. J.
Griesser
, and
B. R.
Coad
,
Biointerphases
13
,
06E409
(
2018
).
40.
S. S.
Griesser
,
M.
Jasieniak
,
B. R.
Coad
, and
H. J.
Griesser
,
Biointerphases
10
,
04A307
(
2015
).
41.
M. B.
Kurtz
and
J. H.
Rex
, in
Advances in Protein Chemistry
, edited by
E.
Scolnick
(
Academic
,
Cambridge
,
MA
,
2001
), Vol. 56, p. 423.
42.
A. K.
Sofjan
,
A.
Mitchell
,
D. N.
Shah
,
T.
Nguyen
,
M.
Sim
,
A.
Trojcak
,
N. D.
Beyda
, and
K. W.
Garey
,
J. Global Antimicrob. Resist.
14
,
58
(
2018
).
43.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001099 for XPS spectra of PrApp coating.

Supplementary Material

You do not currently have access to this content.