Strategies that do not require additional characterization to be performed on the sample or the collection of additional secondary ion signals are needed to depth correct 3D SIMS images of cells. Here, we develop a depth correction strategy that uses the pixel intensities in the secondary electron images acquired during negative-ion NanoSIMS depth profiling to reconstruct the sample morphology. This morphology reconstruction was then used to depth correct the 3D SIMS images that show the components of interest in the sample. As a proof of concept, we applied this approach to NanoSIMS depth profiling data that show the 15N-enrichment and 18O-enrichment from 15N-sphingolipids and 18O-cholesterol, respectively, within a metabolically labeled Madin–Darby canine kidney cell. Comparison of the cell morphology reconstruction to the secondary electron images collected with the NanoSIMS revealed that the assumption of a constant sputter rate produced small inaccuracies in sample morphology after approximately 0.66 μm of material was sputtered from the cell. Nonetheless, the resulting 3D renderings of the lipid-specific isotope enrichments better matched the shapes and positions of the subcellular compartments that contained 15N-sphingolipids and 18O-cholesterol than the uncorrected 3D SIMS images. This depth correction of the 3D SIMS images also facilitated the detection of spherical cholesterol-rich compartments that were surrounded by membranes containing cholesterol and sphingolipids. Thus, we expect this approach will facilitate identifying the subcellular structures that are enriched with biomolecules of interest in 3D SIMS images while eliminating the need for correlated analyses or additional secondary ion signals for the depth correction of 3D NanoSIMS images.

1.
H. A.
Klitzing
,
P. K.
Weber
, and
M. L.
Kraft
,
Methods in Molecular Biology: Nanoimaging Methods and Protocols
, edited by
A. A.
Sousa
and
M. J.
Kruhlak
(
Humana
,
Totowa
,
NJ
,
2013
), Vol. 950, pp.
483
501
.
2.
B. L.
Gorman
and
M. L.
Kraft
,
Anal. Chem.
92
,
1645
(
2020
).
3.
B. L.
Gorman
,
A. N.
Yeager
,
C. E.
Chini
, and
M. L.
Kraft
,
Characterization of Biological Membranes Structure and Dynamics
, edited by
M.-P.
Nieh
,
F. A.
Heberle
, and
J.
Katsaras
(
De Gruyter
,
Berlin
,
2019
), pp.
287
322
.
4.
M. L.
Kraft
and
H. A.
Klitzing
,
Biochim. Biophys. Acta
1841
,
1108
(
2014
).
5.
B.
Johansson
,
Surf. Interface Anal.
38
,
1401
(
2006
).
6.
D. R. N.
Vos
,
S. R.
Ellis
,
B.
Balluff
, and
R. M. A.
Heeren
,
Mol. Imaging Biol.
23
,
149
(
2021
).
7.
M. K.
Passarelli
and
N.
Winograd
,
Biochim. Biophys. Acta
1811
,
976
(
2011
).
8.
A. S.
Mohammadi
,
X.
Li
, and
A. G.
Ewing
,
Anal. Chem.
90
,
8509
(
2018
).
9.
J. S.
Fletcher
and
J. C.
Vickerman
,
Anal. Chem.
85
,
610
(
2013
).
10.
S. G.
Ostrowski
,
C. T.
Van Bell
,
N.
Winograd
, and
A. G.
Ewing
,
Science
305
,
71
(
2004
).
11.
M. E.
Kurczy
,
P. D.
Piehowski
,
C. T.
Van Bell
,
M. L.
Heien
,
N.
Winograd
, and
A. G.
Ewing
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
2751
(
2010
).
12.
R. L.
Wilson
,
J. F.
Frisz
,
H. A.
Klitzing
,
J.
Zimmerberg
,
P. K.
Weber
, and
M. L.
Kraft
,
Biophys. J.
108
,
1652
(
2015
).
13.
J. F.
Frisz
,
H. A.
Klitzing
,
K.
Lou
,
I. D.
Hutcheon
,
P. K.
Weber
,
J.
Zimmerberg
, and
M. L.
Kraft
,
J. Biol. Chem.
288
,
16855
(
2013
).
14.
J. F.
Frisz
 et al,
Proc. Natl. Acad. Sci. U.S.A.
110
,
E613
(
2013
).
15.
A. N.
Yeager
,
P. K.
Weber
, and
M. L.
Kraft
,
Biochim. Biophys. Acta
1860
,
2004
(
2018
).
16.
C.
He
 et al,
Proc. Natl. Acad. Sci. U.SA.
114
,
2000
(
2017
).
17.
A. N.
Yeager
,
P. K.
Weber
, and
M. L.
Kraft
,
Biointerphases
11
,
02A309
(
2016
).
18.
D.
Breitenstein
,
C. E.
Rommel
,
R.
Möllers
,
J.
Wegener
, and
B.
Hagenhoff
,
Angew. Chem. Int. Ed.
46
,
5332
(
2007
).
19.
M. A.
Robinson
,
D. J.
Graham
, and
D. G.
Castner
,
Anal. Chem.
84
,
4880
(
2012
).
20.
J. S.
Fletcher
,
N. P.
Lockyer
,
S.
Vaidyanathan
, and
J. C.
Vickerman
,
Anal. Chem.
79
,
2199
(
2007
).
21.
J. S.
Fletcher
,
Biointerphases
10
,
018902
(
2015
).
22.
A.
Thomen
 et al,
ACS Nano
14
,
4316
(
2020
).
23.
C. E.
Chini
,
G. L.
Fisher
,
B.
Johnson
,
M. M.
Tamkun
, and
M. L.
Kraft
,
Biointerphases
13
,
03B409
(
2018
).
24.
J.
Brison
,
D. S. W.
Benoit
,
S.
Muramoto
,
M.
Robinson
,
P. S.
Stayton
, and
D. G.
Castner
,
Surf. Interface Anal.
43
,
354
(
2011
).
25.
D. J.
Graham
,
J. T.
Wilson
,
J. J.
Lai
,
P. S.
Stayton
, and
D. G.
Castner
,
Biointerphases
11
,
02A304
(
2016
).
26.
C.
Szakal
,
K.
Narayan
,
J.
Fu
,
J.
Lefman
, and
S.
Subramaniam
,
Anal. Chem.
83
,
1207
(
2011
).
27.
H.
Tian
,
L. J.
Sparvero
,
P.
Blenkinsopp
,
A. A.
Amoscato
,
S. C.
Watkins
,
H.
Bayır
,
V. E.
Kagan
, and
N.
Winograd
,
Angew. Chem. Int. Ed.
58
,
3156
(
2019
).
28.
G.
McMahon
,
B. J.
Glassner
, and
C. P.
Lechene
,
Appl. Surf. Sci.
252
,
6895
(
2006
).
29.
J.
Nunez
,
R.
Renslow
,
J. B.
Cliff
, and
C. R.
Anderton
,
Biointerphases
13
,
03B301
(
2018
).
30.
A.
Wucher
,
J.
Cheng
, and
N.
Winograd
,
Anal. Chem.
79
,
5529
(
2007
).
31.
A.
Wucher
,
J.
Cheng
,
L.
Zheng
,
D.
Willingham
, and
N.
Winograd
,
Appl. Surf. Sci.
255
,
984
(
2008
).
32.
T.
Terlier
,
J.
Lee
,
K.
Lee
, and
Y.
Lee
,
Anal. Chem.
90
,
1701
(
2018
).
33.
S.
Jung
,
N.
Lee
,
M.
Choi
,
J.
Lee
,
E.
Cho
, and
M.
Joo
,
Appl. Surf. Sci.
432
,
90
(
2018
).
34.
M. A.
Moreno
,
I.
Mouton
,
N.
Chevalier
,
J.-P.
Barnes
,
F.
Bassani
, and
B.
Gautier
,
J. Vac. Sci. Technol. B
36
,
03F122
(
2018
).
35.
V.
Spampinato
,
M.
Dialameh
,
A.
Franquet
,
C.
Fleischmann
,
T.
Conard
,
P.
van der Heide
, and
W.
Vandervorst
,
Anal. Chem.
92
,
11413
(
2020
).
36.
S.
Ichihara
,
N.
Kitagawa
, and
H.
Akutsu
,
Perception
36
,
686
(
2007
).
37.
E.
Kaplan
,
The Senses A Comprehensive Reference
, edited by
R. H.
Masland
,
T. D.
Albright
,
T. D.
Albright
,
R. H.
Masland
,
P.
Dallos
,
D.
Oertel
,
S.
Firestein
,
G. K.
Beauchamp
,
M.
Catherine Bushnell
,
A. I.
Basbaum
,
J. H.
Kaas
, and
E. P.
Gardner
(
Academic
,
New York
,
2008
), pp.
29
43
.
38.
J.
Schindelin
 et al,
Nat. Methods
9
,
676
(
2012
).
39.
P.
Gormanns
,
S.
Reckow
,
J. C.
Poczatek
,
C. W.
Turck
, and
C.
Lechene
,
PLoS One
7
,
e30576
(
2012
).
40.
C. T.
Rueden
,
J.
Schindelin
,
M. C.
Hiner
,
B. E.
DeZonia
,
A. E.
Walter
,
E. T.
Arena
, and
K. W.
Eliceiri
,
BMC Bioinf.
18
,
529
(
2017
).
41.
C. C.
Chude-Olisah
,
G.
Sulong
,
U. A. K.
Chude-Okonkwo
, and
S. Z. M.
Hashim
, in
IEEE International Conference on Signal and Image Processing Applications
(IEEE,
Melaka
,
2013
), pp.
412
416
.
42.
G.
Barker
and
N. L.
Simmons
,
Q. J. Exp. Physiol.
66
,
61
(
1981
).
43.
A.
Jeanes
,
M.
Smutny
,
J. M.
Leerberg
, and
A. S.
Yap
,
J. Mol. Histol.
40
,
395
(
2009
).
44.
A.
Puliafito
,
L.
Hufnagel
,
P.
Neveu
,
S.
Streichan
,
A.
Sigal
,
D. K.
Fygenson
, and
B. I.
Shraiman
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
739
(
2012
).
45.
S.
Ghosal
,
S. J.
Fallon
,
T. J.
Leighton
,
K. E.
Wheeler
,
M. J.
Kristo
,
I. D.
Hutcheon
, and
P. K.
Weber
,
Anal. Chem.
80
,
5986
(
2008
).
46.
V.
Dutt
and
J. F.
Greenleaf
,
IEEE Trans. Med. Imaging
15
,
802
(
1996
).
47.
A. V.
Dsouza
,
H.
Lin
,
J. R.
Gunn
, and
B. W.
Pogue
,
J. Biomed. Opt.
20
,
1
(
2015
).
48.
V.
Damjanovski
,
CCTV
(
Elsevier
,
2014
), pp.
212
253
.
49.
S.
Koch
,
G.
Ziegler
, and
H.
Hutter
,
Anal. Bioanal. Chem.
405
,
7161
(
2013
).
50.
T. C.
Walther
and
R. V.
Farese
,
Annu. Rev. Biochem.
81
,
687
(
2012
).
51.
G.
Van Meer
and
A. I. P. M.
de Kroon
,
J. Cell Sci.
124
,
5
(
2011
).
52.
G.
Van Meer
,
D. R.
Voelker
, and
G. W.
Feigenson
,
Nat. Rev. Mol. Cell Biol.
9
,
112
(
2008
).
53.
C. R.
Hopkins
and
I. S.
Trowbridge
,
J. Cell Biol.
97
,
508
(
1983
).
54.
J.
Luo
,
L.
Jiang
,
H.
Yang
, and
B.-L.
Song
,
Traffic
18
,
209
(
2017
).
55.
J. L. A. N.
Murk
 et al,
Proc. Natl. Acad. Sci. U.S.A.
100
,
13332
(
2003
).
56.
M. L.
Kraft
,
A. N.
Yeager
, and
P. K.
Weber
(
2021
). “NanoSIMS depth profiling data of an MDCK Cell,” Illinois Data Bank.
57.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001092 for a supplemental figure showing the top view of the uncorrected and depth corrected isotope enrichment 3D images of isotope-labeled sphingolipid and cholesterol distributions within a depth profiled region of a cell.

Supplementary Material

You do not currently have access to this content.