Nano- and microcrystalline ZnO is an inexpensive, easily synthesized material with a multitude of applications. Its usefulness in the present and future stems from its exceptional optoelectronic, structural, and chemical characteristics as well as a broad range of production techniques. One application comes from its ability to inhibit bacterial growth. Despite the well-documented, vigorously studied antimicrobial action of ZnO particles, the most fundamental physical and chemical mechanisms driving growth inhibition are still not well identified. Particularly, the nature of interactions between ZnO surfaces and extracellular material is not totally clear. This is important given the anisotropic lattice of ZnO leading to two characteristically different lattice terminations: polar and nonpolar, polar being electrically charged with many defect sites and nonpolar being electrically neutral while remaining relatively defect-free. In this work, we employ a hydrothermal growth protocol that allows us to produce ZnO microcrystals with dependable control of morphology and, particularly, the relative abundances of polar and nonpolar free surfaces. This functions as a platform for our investigations into surface-surface interactions behind the antibacterial action of ZnO microcrystals. In our studies, we produced ZnO crystals comparable in size or larger than Staphylococcus aureus bacteria. This was done intentionally to ensure that the ZnO particles would not internalize into the bacterial cells. Our experiments were performed in conjunction with surface photovoltage studies of ZnO crystals to characterize electronic structure and charge dynamics that might be contributing to the antibacterial properties of our samples. We report on the interactions between ZnO microcrystalline surfaces and extracellular material of Staphylococcus aureus bacteria.

1.
A.
Sirelkhatim
,
S.
Mahmud
,
A.
Seeni
,
N. H. M.
Kaus
,
L. C.
Ann
,
S. K. M.
Bakhori
,
H.
Hasan
, and
D.
Mohamad
,
Nano-Micro Lett.
7
,
219
(
2015
).
2.
Q.
Cai
 et al.,
ACS Appl. Mater. Interfaces
8
,
10109
(
2016
).
3.
C.
Bekeny
,
T.
Voss
,
H.
Gafsi
,
J.
Gutowski
,
B.
Postels
,
M.
Kreye
, and
A.
Waag
,
J. Appl. Phys.
100
,
104317
(
2006
).
4.
K.
Sun
,
I.
Zeimpekis
,
C.
Hu
,
N.
Ditshego
,
O.
Thomas
,
M. R.
de Planque
,
H. M.
Chong
,
H.
Morgan
, and
P.
Ashburn
,
Microelectron. Eng.
153
,
96
(
2016
).
5.
K.
Kelly
,
C. M.
Havrilla
,
T. C.
Brady
,
K. H.
Abramo
, and
E. D.
Levin
,
Environ. Health Perspect.
106
,
375
(
1998
).
6.
K. S.
Siddiqi
,
A. U.
Rahman
, and
A. A. H.
Tajuddin
,
Nanoscale Res. Lett.
13
,
141
(
2018
).
7.
F.
Yu
 et al.,
Chem. Eur. J.
22
,
8053
(
2016
).
8.
U.
Kadiyala
,
E. S.
Turali-Emre
,
J. H.
Bahng
,
N. A.
Kotov
, and
J. S.
VanEpps
,
Nanoscale
10
,
4927
(
2018
).
9.
R.
Wahab
,
Y.-S.
Kim
,
A.
Mishra
,
S.-I.
Yun
, and
H.-S.
Shin
,
Nanoscale Res. Lett.
5
,
1675
(
2010
).
10.
Y.
Xie
,
Y.
He
,
P. L.
Irwin
,
T.
Jin
, and
X.
Shi
,
Appl. Environ. Microbiol.
77
,
2325
(
2011
).
11.
A.
Joe
,
S.-H.
Park
,
K.-D.
Shim
,
D.-J.
Kim
,
K.-H.
Jhee
,
H.-W.
Lee
,
C.-H.
Heo
,
H.-M.
Kim
, and
E.-S.
Jang
,
J. Ind. Eng. Chem.
45
,
430
(
2017
).
12.
A. L.
Neal
,
N.
Kabengi
,
A.
Grider
, and
P. M.
Bertsch
,
Nanotoxicology
6
,
371
(
2012
).
13.
A.
Lipovsky
,
Z.
Tzitrinovich
,
H.
Friedmann
,
G.
Applerot
,
A.
Gedanken
, and
R.
Lubart
,
J. Phys. Chem. C
113
,
15997
(
2009
).
14.
G.
Kresse
,
O.
Dulub
, and
U.
Diebold
,
Phys. Rev. B
68
,
245409
(
2003
).
15.
O.
Dulub
,
U.
Diebold
, and
G.
Kresse
,
Phys. Rev. Lett.
90
,
016102
(
2003
).
16.
M.-H.
Du
,
S.
Zhang
,
J.
Northrup
, and
S. C.
Erwin
,
Phys. Rev. B
78
,
155424
(
2008
).
17.
J. H.
Lai
,
S. H.
Su
,
H.-H.
Chen
,
J. C. A.
Huang
, and
C.-L.
Wu
,
Phys. Rev. B
82
,
155406
(
2010
).
18.
J. V.
Lauritsen
 et al.,
ACS Nano
5
,
5987
(
2011
).
19.
S.
Baruah
and
J.
Dutta
,
Sci. Technol. Adv. Mater.
10
,
013001
(
2009
).
20.
A. R.
Rachamim
,
S. H.
Dalal
,
S. M.-L.
Pfaendler
,
M. E.
Swanwick
,
A. J.
Flewitt
, and
W. I.
Milne
,
MRS Online Proc. Libr.
1174
,
160
(
2009
).
21.
K.
Sambath
,
M.
Saroja
,
M.
Venkatachalam
,
K.
Rajendran
, and
N.
Muthukumarasamy
,
J. Mater. Sci. Mater. Electron.
23
,
431
(
2012
).
22.
L.
Kronik
and
Y.
Shapira
,
Surf. Sci. Rep.
37
,
1
(
1999
).
23.
P.
Granitzer
,
K.
Rumpf
,
Y.
Strzhemechny
, and
P.
Chapagain
,
Nanoscale Res. Lett.
9
,
423
(
2014
).
24.
R. M.
Peters
,
S. P.
Glancy
,
J.
Antonio Paramo
, and
Y. M.
Strzhemechny
,
MRS Proc.
1201
,
1201-H03-03
(
2009
).
25.
P.
Erhart
,
K.
Albe
, and
A.
Klein
,
Phys. Rev. B
73
,
205203
(
2006
).
26.
M.
Valtiner
,
S.
Borodin
, and
G.
Grundmeier
,
Langmuir
24
,
5350
(
2008
).
27.
N. J.
Nicholas
,
W.
Ducker
, and
G. V.
Franks
,
Langmuir
28
,
5633
(
2012
).
You do not currently have access to this content.