Dihydroxyphenylalanine (DOPA) is extensively reported to be a surface-independent anchor molecule in bioadhesive surface modification and antifouling biomaterial fabrication. However, the mechanisms of DOPA adsorption on versatile substrates and the comparison between experimental results and theoretical results are less addressed. We report the adsorption of DOPA anchored monomethoxy poly(ethylene glycol) (DOPA-mPEG) on substrates and surface wettability as well as antifouling property in comparison with thiol and hydroxyl anchored mPEG (mPEG-SH and mPEG-OH). Gold and hydroxylated silicon were used as model substrates to study the adsorptions of mPEGs. The experimental results showed that the DOPA-mPEG showed higher affinity to both gold and silicon wafers, and the DOPA-mPEG modified surfaces had higher resistance to protein adsorption than those of mPEG-SH and mPEG-OH. It is revealed that the surface wettability is primary for surface fouling, while polymer flexibility is the secondary parameter. We present ab initio calculations of the adsorption of mEGs with different end-functionalities on Au and hydroxylated silicon wafer (Si-OH), where the binding energies are obtained. It is established that monomethoxy ethylene glycol (mEG) with DOPA terminal DOPA-mEG is clearly favored for the adsorption with both gold and Si-OH surfaces due to the bidentate Au—O interactions and the bidentate O—H bond interactions, in agreement with experimental evidence.

1.
I.
Banerjee
,
R. C.
Pangule
, and
R. S.
Kane
,
Adv. Mater.
23
,
690
(
2011
).
2.
Y.
Xu
,
M.
Shinomiya
, and
A.
Harada
,
Adv. Mater.
28
,
2209
(
2016
).
3.
M.
Motornov
,
Y.
Roiter
,
I.
Tokarev
, and
S.
Minko
,
Prog. Polym. Sci.
35
,
174
(
2010
).
4.
Y.
Zhu
,
X.
Xu
,
N. D.
Brault
,
A. J.
Keefe
,
X.
Han
,
Y.
Deng
,
J.
Xu
,
Q.
Yu
, and
S.
Jiang
,
Anal. Chem.
86
,
2871
(
2014
).
5.
F.
Schreiber
,
Prog. Surface Sci.
65
,
151
(
2000
).
6.
B.
Zhao
and
W. J.
Brittain
,
Prog. Polym. Sci.
25
,
677
(
2000
).
7.
S.
Minko
,
S.
Patil
,
V.
Datsyuk
,
F.
Simon
,
K.-J.
Eichhorn
,
M.
Motornov
,
D.
Usov
,
I.
Tokarev
, and
M.
Stamm
,
Langmuir
18
,
289
(
2002
).
8.
R.
Barbey
,
L.
Lavanant
,
D.
Paripovic
,
N.
Schüwer
,
C.
Sugnaux
,
S.
Tugulu
, and
H.-A.
Klok
,
Chem. Rev.
109
,
5437
(
2009
).
9.
C.
Vericat
,
M. E.
Vela
,
G.
Benitez
,
P.
Carro
, and
R. C.
Salvarezza
,
Chem. Soc. Rev.
39
,
1805
(
2010
).
10.
H.
Grönbeck
,
A.
Curioni
, and
W.
Andreoni
,
J. Am. Chem. Soc.
122
,
3839
(
2000
).
11.
C. I.
Biggs
,
W.
Marc
, and
M. I.
Gibson
,
Biomacromolecules
17
,
2626
(
2016
).
12.
S. M.
Balko
,
T.
Kreer
,
D. J.
Mulder
,
P. J.
Costanzo
,
T. E.
Patten
, and
T. L.
Kuhl
,
Macromolecules
46
,
9826
(
2013
).
13.
T.
Schiros
 et al,
J. Phys. Chem. C
114
,
10240
(
2010
).
15.
Q.
Wei
,
K.
Achazi
,
H.
Liebe
,
A.
Schulz
,
P.-L. M.
Noeske
,
I.
Grunwald
, and
R.
Haag
,
Angew. Chem. Int. Ed.
53
,
11650
(
2014
).
16.
M.
Yu
,
J.
Hwang
, and
T. J.
Deming
,
J. Am. Chem. Soc.
121
,
5825
(
1999
).
17.
P.
Wilke
,
N.
Helfricht
,
A.
Mark
,
G.
Papastavrou
,
D.
Faivre
, and
H. G.
Börner
,
J. Am. Chem. Soc.
136
,
12667
(
2014
).
18.
S.
Jiang
and
Z.
Cao
,
Adv. Mater.
22
,
920
(
2010
).
19.
A. A.
D’souza
and
R.
Shegokar
,
Expert Opin. Drug Deliv.
13
,
1257
(
2016
).
20.
K. L.
Prime
and
G. M.
Whitesides
,
J. Am. Chem. Soc.
115
,
10714
(
1993
).
21.
X.
Yuan
,
D.
Fabregate
,
K.
Yoshimotob
, and
Y.
Nagasaki
,
Colloids Surface B
92
,
25
(
2012
).
22.
S.
Jo
and
K.
Park
,
Biomaterials
21
,
605
(
2000
).
24.
H.
Lee
,
K. D.
Lee
,
K. B.
Pyo
,
S. Y.
Park
, and
H.
Lee
,
Langmuir
26
,
3790
(
2010
).
25.
Q.
Ye
,
F.
Zhou
, and
W.
Liu
,
Chem. Soc. Rev.
40
,
4244
(
2011
).
26.
C.
Gao
,
G.
Li
,
H.
Xue
,
W.
Yang
,
F.
Zhang
, and
S.
Jiang
,
Biomaterials
31
,
1486
(
2010
).
27.
J. L.
Dalsin
,
L.
Lin
,
S.
Tosatti
,
J.
Vörös
,
M.
Textor
, and
P. B.
Messersmith
,
Langmuir
21
,
640
(
2005
).
28.
H. S.
Sundaram
,
X.
Han
,
A. K.
Nowinski
,
J.-R.
Ella-Menye
,
C.
Wimbish
,
P.
Marek
,
K.
Senecal
, and
S.
Jiang
,
ACS Appl. Mater. Interfaces
6
,
6664
(
2014
).
29.
G.
Li
,
G.
Cheng
,
H.
Xue
,
S.
Chen
,
F.
Zhang
, and
S.
Jiang
,
Biomaterials
29
,
4592
(
2008
).
30.
Y.
Dang
,
M.
Quan
,
C.-M.
Xing
,
Y.-B.
Wang
, and
Y.-K.
Gong
,
J. Mater. Chem. B
3
,
2350
(
2015
).
31.
B. P.
Lee
,
P. B.
Messersmith
,
J. N.
Israelachvili
, and
J. H.
Waite
,
Annu. Rev. Mater. Res.
41
,
99
(
2011
).
32.
C. H.
Lee
,
S. M.
Dellatore
,
W. M.
Miller
, and
P. B.
Messersmith
,
Science
318
,
426
(
2007
).
33.
J. H.
Ryu
,
P. B.
Messersmith
, and
H.
Lee
,
ACS Appl. Mater. Interfaces
10
,
7523
(
2018
).
34.
W.
Wei
,
J.
Yu
,
C.
Broomell
,
J. N.
Israelachvili
, and
J. H.
Waite
,
J. Am. Chem. Soc.
135
,
377
(
2013
).
35.
L.
Xie
,
L.
Gong
,
J.
Zhang
,
L.
Han
,
L.
Xiang
,
J.
Chen
,
J.
Liu
,
B.
Yan
, and
H.
Zeng
,
J. Mater. Chem. A
7
,
21944
(
2019
).
36.
S. A.
Mian
,
L. C.
Saha
,
J.
Jang
,
L.
Wang
,
X.
Gao
, and
S.
Nagase
,
J. Phys. Chem. C
114
,
20793
(
2010
).
37.
S. A.
Mian
,
L.-M.
Yang
,
L. C.
Saha
,
E.
Ahmed
,
M.
Ajmal
, and
E.
Ganz
,
Langmuir
30
,
6906
(
2014
).
38.
S. A.
Mian
and
Y.
Khan
,
J. Chem.
2017
,
8756519
(
2017
).
39.
L.
Li
,
S.
Chen
,
J.
Zheng
,
B. D.
Ratner
, and
S.
Jiang
,
J. Phys. Chem. B
109
,
2934
(
2005
).
40.
S.
Chen
,
J.
Zheng
,
L.
Li
, and
S.
Jiang
,
J. Am. Chem. Soc.
127
,
14473
(
2005
).
41.
Y. C.
Chung
,
Y. H.
Chiu
,
Y. W.
Wu
, and
Y. T.
Tao
,
Biomaterials
26
,
2313
(
2005
).
42.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
43.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
45.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
46.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
47.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
48.
M.
Vinodha
and
K.
Senthilkumar
,
Mol. Simulat.
45
,
492
(
2019
).
49.
E.
Shin
 et al,
Macromolecules
53
,
3551
(
2020
).
50.
T.
Gillich
,
E. M.
Benetti
,
E.
Rakhmatullina
,
R.
Konradi
,
W.
Li
,
A.
Zhang
,
A. D.
Schlüter
, and
M.
Textor
,
J. Am. Chem. Soc.
133
,
10940
(
2011
).
51.
G.
Morgese
,
Y.
Gombert
,
S. N.
Ramakrishna
, and
E. M.
Benetti
,
ACS Appl. Mater. Interfaces
10
,
41839
(
2018
).
52.
P.
Harder
,
M.
Grunze
,
R.
Dahint
,
G. M.
Whitesides
, and
P. E.
Laibinis
,
J. Phys. Chem. B
102
,
426
(
1998
).
53.
P.
Hamilton-Brown
,
T.
Gengenbach
,
H. J.
Griesser
, and
L.
Meagher
,
Langmuir
25
,
9149
(
2009
).
54.
J.
Lv
,
J.
Jin
,
Y.
Han
, and
W.
Jiang
,
J. Biomater. Sci. Polym. Ed.
30
,
1670
(
2019
).
55.
S. J.
Kim
,
J. H.
Chung
,
T. Y.
Kim
, and
S. Y.
Cho
,
Stud. Surf. Sci. Catal.
159
,
141
(
2006
).
56.
R. C.
Gunawan
,
J. A.
King
,
B. P.
Lee
,
Philip B.
Messersmith
, and
W. M.
Miller
,
Langmuir
23
,
10635
(
2007
).
57.
K. H. A.
Lau
,
C.
Ren
,
S. H.
Park
,
I.
Szleifer
, and
P. B.
Messersmith
,
Langmuir
28
,
2288
(
2012
).
58.
S.
Pasche
,
J.
Vörös
,
H. J.
Griesser
,
N. D.
Spencer
, and
M.
Textor
,
J. Phys. Chem. B
109
,
17545
(
2005
).
59.
S.
Pasche
,
M.
Textor
,
L.
Meagher
,
N. D.
Spencer
, and
H. J.
Griesser
,
Langmuir
21
,
6508
(
2005
).
60.
I. L.
Geada
,
H.
Ramezani-Dakhel
,
T.
Jamil
,
M.
Sulpizi
, and
H.
Heinz
,
Nat. Commun.
9
,
716
(
2018
).
61.
P. C.
Redfern
,
P.
Zapol
,
L. A.
Curtiss
,
T.
Rajh
, and
M. C.
Thurnauer
,
J. Phys. Chem. B
107
,
11419
(
2003
).
You do not currently have access to this content.