Understanding the structure and chemistry of nanoscopic surfaces is an important challenge for biointerface sciences. Sum frequency scattering (SFS) spectroscopy can specifically probe the surfaces of nanoparticles, vesicles, liposomes, and other materials relevant to biomaterial research, and, as a vibrational spectroscopy method, it can provide molecular level information about the surface chemistry. SFS is particularly promising to probe the structure of proteins, and other biological molecules, at nanoparticle surfaces. Here, amide I spectra can provide information about protein folding and orientation, while spectra in the C–D and C–H stretching regions allow experiments to determine the mode of interaction between particle surfaces and proteins. Methods used currently employ a closed liquid cell or cuvette, which works extremely well for C–H and phosphate regions but is often impeded in the amide I and C–D regions by a strong background signal that originates from the window material of the sample cells. Here, we discuss a windowless geometry for collecting background-free and high-fidelity SFS spectra in the amide I and C–D regions. We demonstrate the improvement in spectra quality by comparing SFS spectra of unextruded, multilamellar vesicles in a sample cuvette with those recorded using the windowless geometry. The sample geometry we propose will enable new experiments using SFS as a probe for protein-particle interactions.

1.
D. G.
Castner
and
B. D.
Ratner
,
Surf. Sci.
500
,
28
(
2002
).
3.
D. W.
Grainger
and
D. G.
Castner
,
Adv. Mater.
20
,
867
(
2008
).
4.
G. A.
Somorjai
,
H.
Frei
, and
J. Y.
Park
,
J. Am. Chem. Soc.
131
,
16589
(
2009
).
5.
J. N.
Anker
,
W. P.
Hall
,
O.
Lyandres
,
N. C.
Shah
,
J.
Zhao
, and
R. P.
Van Duyne
,
Nat. Mater.
7
,
442
(
2008
).
6.
M. A.
Dobrovolskaia
,
D. R.
Germolec
, and
J. L.
Weaver
,
Nat. Nanotechnol.
4
,
411
(
2009
).
7.
K.
Saha
,
S. S.
Agasti
,
C.
Kim
,
X.
Li
, and
V. M.
Rotello
,
Chem. Rev.
112
,
2739
(
2012
).
8.
K.
Peynshaert
,
B. B.
Manshian
,
F.
Joris
,
K.
Braeckmans
,
S. C.
De Smedt
,
J.
Demeester
, and
S. J.
Soenen
,
Chem. Rev.
114
,
7581
(
2014
).
9.
Q.
Mu
,
G.
Jiang
,
L.
Chen
,
H.
Zhou
,
D.
Fourches
,
A.
Tropsha
, and
B.
Yan
,
Chem. Rev.
114
,
7740
(
2014
).
10.
A.
Rafati
,
A. G.
Shard
, and
D. G.
Castner
,
Biointerphases
11
,
04B304
(
2016
).
11.
S. D.
Techane
,
L. J.
Gamble
, and
D. G.
Castner
,
J. Phys. Chem. C
115
,
9432
(
2011
).
12.
D. R.
Baer
,
D. J.
Gaspar
,
P.
Nachimuthu
,
S. D.
Techane
, and
D. G.
Castner
,
Anal. Bioanal. Chem.
396
,
983
(
2010
).
13.
S.
Roke
,
W. G.
Roeterdink
,
J. E. G. J.
Wijnhoven
,
A. V.
Petukhov
,
A. W.
Kleyn
, and
M.
Bonn
,
Phys. Rev. Lett.
91
,
258302
(
2003
).
14.
S.
Roke
,
M.
Bonn
, and
A. V.
Petukhov
,
Phys. Rev. B
70
,
115106
(
2004
).
15.
S.
Roke
and
G.
Gonella
,
Annu. Rev. Phys. Chem.
63
,
353
(
2012
).
16.
H. B.
de Aguiar
,
A. G. F.
de Beer
,
M. L.
Strader
, and
S.
Roke
,
J. Am. Chem. Soc.
132
,
2122
(
2010
).
17.
R.
Vacha
,
S. W.
Rick
,
P.
Jungwirth
,
A. G. F.
de Beer
,
H. B.
de Aguiar
,
J. S.
Samson
, and
S.
Roke
,
J. Am. Chem. Soc.
133
,
10204
(
2011
).
18.
H. B.
de Aguiar
,
M. L.
Strader
,
A. G. F.
de Beer
, and
S.
Roke
,
J. Phys. Chem. B
115
,
2970
(
2011
).
19.
M. L.
Strader
,
H. B.
de Aguiar
,
A. G. F.
de Beer
, and
S.
Roke
,
Soft Matter
7
,
4959
(
2011
).
20.
A. E.
Vasdekis
,
E. A.
Scott
,
S.
Roke
,
J. A.
Hubbell
, and
D.
Psaltis
,
Annu. Rev. Mater. Res.
43
,
283
(
2013
).
21.
M.
Makarem
,
C. M.
Lee
,
D.
Sawada
,
H. M.
O’Neill
, and
S. H.
Kim
,
J. Phys. Chem. Lett.
9
,
70
(
2018
).
22.
N.
Smolentsev
,
Y.
Chen
,
K. C.
Jena
,
M. A.
Brown
, and
S.
Roke
,
J. Chem. Phys.
141
,
18C524
(
2014
).
23.
G.
Ma
and
H. C.
Allen
,
J. Am. Chem. Soc.
124
,
9374
(
2002
).
24.
P. K.
Johansson
,
L.
Schmüser
, and
D. G.
Castner
,
Top. Catal.
61
,
1101
(
2018
).
25.
A. L.
Harris
,
C. E. D.
Chidsey
,
N. J.
Levinos
, and
D. N.
Loiacono
,
Chem. Phys. Lett.
141
,
350
(
1987
).
26.
A. G.
de Beer
and
S.
Roke
,
J. Chem. Phys.
132
,
234702
(
2010
).
27.
A. G. F.
de Beer
,
S.
Roke
, and
J. I.
Dadap
,
J. Opt. Soc. Am. B
28
,
1374
(
2011
).
28.
H. B.
de Aguiar
,
J.-S.
Samson
, and
S.
Roke
,
Chem. Phys. Lett.
512
,
76
(
2011
).
29.
Y.
Chen
,
K. C.
Jena
,
C.
Lütgebaucks
,
H. I.
Okur
, and
S.
Roke
,
Nano Lett.
15
,
5558
(
2015
).
30.
H. I.
Okur
,
Y.
Chen
,
N.
Smolentsev
,
E.
Zdrali
, and
S.
Roke
,
J. Phys. Chem. B
121
,
2808
(
2017
).
31.
Y.
Chen
,
H. I.
Okur
,
C.
Lütgebaucks
, and
S.
Roke
,
Langmuir
34
,
1042
(
2018
).
32.
C.
Humbert
and
B.
Busson
, in
Biointerface Characterization by Advanced IR Spectroscopy
, edited by
C. M.
Pradier
and
Y. J.
Chabal
(
Elsevier
,
Amsterdam
,
2011
), pp.
279
321
.
33.
T.
Weidner
,
N. F.
Breen
,
K.
Li
,
G. P.
Drobny
, and
D. G.
Castner
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
13288
(
2010
).
34.
35.
S.
Hosseinpour
,
S. J.
Roeters
,
M.
Bonn
,
W.
Peukert
,
S.
Woutersen
, and
T.
Weidner
,
Chem. Rev.
120
,
3420
(
2020
).
36.
M.
Reppert
and
A.
Tokmakoff
,
Annu. Rev. Phys. Chem.
67
,
359
(
2016
).
37.
A. C. S.
Talari
,
M. A. G.
Martinez
,
Z.
Movasaghi
,
S.
Rehman
, and
I. U.
Rehman
,
Appl. Spectrosc. Rev.
52
,
456
(
2017
).
38.
39.
L.
Fu
,
G.
Ma
, and
E. C. Y.
Yan
,
J. Am. Chem. Soc.
132
,
5405
(
2010
).
40.
E. A.
Perets
,
P. E.
Videla
,
E. C. Y.
Yan
, and
V. S.
Batista
,
J. Phys. Chem. B
123
,
5769
(
2019
).
41.
X.
Chen
,
M. L.
Clarke
,
J.
Wang
, and
Z.
Chen
,
Int. J. Mod. Phys. B
19
,
691
(
2005
).
42.
43.
P. K.
Johansson
and
P.
Koelsch
,
J. Am. Chem. Soc.
136
,
13598
(
2014
).
44.
P. K.
Johansson
and
D. G.
Castner
,
Langmuir
35
,
7848
(
2019
).
45.
P.-A.
Monnard
,
A.
Luptak
, and
D. W.
Deamer
,
Philos. Trans. R. Soc. B
362
,
1741
(
2007
).
46.
N.
Smolentsev
,
C.
Lütgebaucks
,
H. I.
Okur
,
A. G. F.
de Beer
, and
S.
Roke
,
J. Am. Chem. Soc.
138
,
4053
(
2016
).
47.
G.
Ma
and
H. C.
Allen
,
Langmuir
22
,
5341
(
2006
).
48.
I. I.
Rzeźnicka
,
M.
Sovago
,
E. H. G.
Backus
,
M.
Bonn
,
T.
Yamada
,
T.
Kobayashi
, and
M.
Kawai
,
Langmuir
26
,
16055
(
2010
).
49.
F.
Wang
,
X.
Li
,
F.
Zhang
,
X.
Liu
,
P.
Hu
,
T.
Beke-Somfai
, and
X.
Lu
,
Langmuir
35
,
12831
(
2019
).
50.
T. W.
Golbek
,
M.
Padmanarayana
,
S. J.
Roeters
,
T.
Weidner
,
C. P.
Johnson
, and
J. E.
Baio
,
Biophys. J.
117
,
1820
(
2019
).
51.
K.
Shirota
,
K.
Yagi
,
T.
Inaba
,
P.-C.
Li
,
M.
Murata
,
Y.
Sugita
, and
T.
Kobayashi
,
Biophys. J.
111
,
999
(
2016
).
You do not currently have access to this content.