The novel coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached more than 160 countries and has been declared a pandemic. SARS-CoV-2 infects host cells by binding to the angiotensin-converting enzyme 2 (ACE-2) surface receptor via the spike (S) receptor-binding protein (RBD) on the virus envelope. Global data on a similar infectious disease spread by SARS-CoV-1 in 2002 indicated improved stability of the virus at lower temperatures facilitating its high transmission in the community during colder months (December–February). Seasonal viral transmissions are strongly modulated by temperatures, which can impact viral trafficking into host cells; however, an experimental study of temperature-dependent activity of SARS-CoV-2 is still lacking. We mimicked SARS-CoV-2 with polymer beads coated with the SARS-CoV-2 S protein to study the effect of seasonal temperatures on the binding of virus-mimicking nanospheres to lung epithelia. The presence of the S protein RBD on nanosphere surfaces led to binding by Calu-3 airway epithelial cells via the ACE-2 receptor. Calu-3 and control fibroblast cells with S-RBD-coated nanospheres were incubated at 33 and 37 °C to mimic temperature fluctuations in the host respiratory tract, and we found no temperature dependence in contrast to nonspecific binding of bovine serum ablumin-coated nanospheres. Moreover, the ambient temperature changes from 4 to 40 °C had no effect on S-RBD-ACE-2 ligand-receptor binding and minimal effect on the S-RBD protein structure (up to 40 °C), though protein denaturing occurred at 51 °C. Our results suggest that ambient temperatures from 4 to 40 °C have little effect on the SARS-CoV-2-ACE-2 interaction in agreement with the infection data currently reported.

1.
Johns Hopkins
, see: https://coronavirus.jhu.edu/data, Im Internet (Stand: 10.12.2020) (2020).
2.
J.
Tan
,
L.
Mu
,
J.
Huang
,
S.
Yu
,
B.
Chen
, and
J.
Yin
,
J. Epidemiol. Commun. Health
59
,
186
(
2005
).
3.
K.
Lin
,
D.
Yee-Tak Fong
,
B.
Zhu
, and
J.
Karlberg
,
Epidemiol. Infect.
134
,
223
(
2006
).
4.
K. H.
Chan
,
J. S. M.
Peiris
,
S. Y.
Lam
,
L. L. M.
Poon
,
K. Y.
Yuen
, and
W. H.
Seto
,
Adv. Virol.
2011
,
734690
.
5.
P.
Bi
,
J.
Wang
, and
J.
Hiller
,
Intern. Med. J.
37
,
550
(
2007
).
6.
E.
Petersen
,
M.
Koopmans
,
U.
Go
,
D. H.
Hamer
,
N.
Petrosillo
,
F.
Castelli
,
M.
Storgaard
,
S.
Al Khalili
, and
L.
Simonsen
,
Lancet Infect. Dis.
20
,
e238
(
2020
).
7.
Q.
Bukhari
and
Y.
Jameel
, see: https://ssrn.com/abstract=3556998 (2020).
8.
J.
Demongeot
,
Y.
Flet-Berliac
, and
H.
Seligmann
,
Biology
9
,
94
(
2020
).
9.
Y.
Wu
,
W.
Jing
,
J.
Liu
,
Q.
Ma
,
J.
Yuan
,
Y.
Wang
,
M.
Du
, and
M.
Liu
,
Sci. Total Environ.
729
,
139051
(
2020
).
10.
J.
Wang
,
K.
Tang
,
K.
Feng
, and
W.
Lv
, see: https://ssrn.com/abstract=3551767 (2020).
11.
L.
Guillier
 et al,
Appl. Environ. Microbiol.
86
,
e01244
(
2020
).
12.
A.
Rohit
,
S.
Rajasekaran
,
I.
Karunasagar
, and
I.
Karunasagar
,
Med. Hypotheses
144
,
109958
(
2020
).
13.
J.
Xie
and
Y.
Zhu
,
Sci. Total Environ.
724
,
138201
(
2020
).
14.
T. F.
Yap
,
Z.
Liu
,
R. A.
Shveda
, and
D. J.
Preston
,
Appl. Phys. Lett.
117
,
060601
(
2020
).
15.
A.
Tobías
and
T.
Molina
,
Environ. Res.
186
,
109553
(
2020
).
16.
P.
Shi
,
Y.
Dong
,
H.
Yan
,
C.
Zhao
,
X.
Li
,
W.
Liu
,
M.
He
,
S.
Tang
, and
S.
Xi
,
Sci. Total Environ.
728
,
138890
(
2020
).
17.
N. G.
Papadopoulos
,
G.
Sanderson
,
J.
Hunter
, and
S. L.
Johnston
,
J. Med. Virol.
58
,
100
(
1999
).
18.
R.
Eccles
,
Rev. Med. Virol.
(published online
2020
).
19.
C.
Sloan
,
M. L.
Moore
, and
T.
Hartert
,
Clin. Transl. Sci.
4
,
48
(
2011
).
20.
M.
D’Amato
,
A.
Molino
,
G.
Calabrese
,
L.
Cecchi
,
I.
Annesi-Maesano
, and
G.
D’Amato
,
Clin. Transl. Allergy
8
,
1
(
2018
).
21.
H. O.
Koskela
,
Int. J. Circumpolar Health
66
,
91
(
2007
).
22.
J.
Jaeger
,
E.
Deal
, Jr.
,
D.
Roberts
,
R.
Ingram
, Jr.
, and
E.
McFadden
, Jr.
,
Med. Sci. Sports Exerc.
12
,
365
(
1980
).
23.
T. M.
Ikäheimo
,
K.
Jaakkola
,
J.
Jokelainen
,
A.
Saukkoriipi
,
M.
Roivainen
,
R.
Juvonen
,
O.
Vainio
, and
J. J.
Jaakkola
,
Viruses
8
,
244
(
2016
).
24.
E. F.
Foxman
,
J. A.
Storer
,
M. E.
Fitzgerald
,
B. R.
Wasik
,
L.
Hou
,
H.
Zhao
,
P. E.
Turner
,
A. M.
Pyle
, and
A.
Iwasaki
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
827
(
2015
).
25.
S. T.
Sehra
,
J. D.
Salciccioli
,
D. J.
Wiebe
,
S.
Fundin
, and
J. F.
Baker
,
Clin. Infect. Dis.
71
,
2482
(
2020
).
26.
P.
Jüni
,
M.
Rothenbühler
,
P.
Bobos
,
K. E.
Thorpe
,
B. R.
da Costa
,
D. N.
Fisman
,
A. S.
Slutsky
, and
D.
Gesink
,
Cmaj
192
,
E566
(
2020
).
27.
E.
Callaway
,
Nature
(published online
2020
).
28.
R.
Mirzaei
 et al,
Int. Immunopharmacol.
88
,
106928
(
2020
).
29.
G.
Fibriansah
,
T.-S.
Ng
,
V. A.
Kostyuchenko
,
J.
Lee
,
S.
Lee
,
J.
Wang
, and
S.-M.
Lok
,
J. Virol.
87
,
7585
(
2013
).
30.
L.
Martínez-Sobrido
,
O.
Peersen
, and
A.
Nogales
,
Viruses
10
,
560
(
2018
).
31.
J. L. S.
Campos
,
S.
Marchese
,
J.
Rana
,
M.
Mossenta
,
M.
Poggianella
,
M.
Bestagno
, and
O. R.
Burrone
,
Sci. Rep.
7
,
1
(
2017
).
33.
M. D.
Shin
 et al,
Nat. Nanotechnol.
1
,
646
(
2020
).
34.
R.
Henderson
 et al,
Nat. Struct. Mol. Biol.
27
,
925
(
2020
).
35.
F.
Perrotta
,
M. G.
Matera
,
M.
Cazzola
, and
A.
Bianco
,
Respir. Med.
168
,
105996
(
2020
).
36.
J.
Shang
,
Y.
Wan
,
C.
Luo
,
G.
Ye
,
Q.
Geng
,
A.
Auerbach
, and
F.
Li
,
Proc. Natl. Acad. Sci. U.S.A.
117
,
11727
(
2020
).
37.
M.
Somiya
,
Q.
Liu
, and
S.
Kuroda
,
Nanotheranostics
1
,
415
(
2017
).
38.
S.
Maslanka Figueroa
,
D.
Fleischmann
,
S.
Beck
,
P.
Tauber
,
R.
Witzgall
,
F.
Schweda
, and
A.
Goepferich
,
Adv. Sci.
7
,
1903204
(
2020
).
39.
M. D.
Vahey
and
D. A.
Fletcher
,
Elife
8
,
e43764
(
2019
).
40.
F.
Xu
,
A.
Bandara
,
H.
Akiyama
,
B.
Eshaghi
,
D.
Stelter
,
T.
Keyes
,
J. E.
Straub
,
S.
Gummuluru
, and
B. M.
Reinhard
,
Proc. Natl. Acad. Sci. U.S.A.
115
,
E9041
(
2018
).
41.
A.
Urakami
 et al,
Clin. Vaccine Immunol.
24
,
e00090
(
2017
).
42.
J.
Ortega-Vinuesa
,
D.
Bastos-Gonzalez
, and
R.
Hidalgo-Alvarez
,
J. Colloid Interface Sci.
176
,
240
(
1995
).
43.
B.
Sissolak
,
C.
Zabik
,
N.
Saric
,
W.
Sommeregger
,
K.
Vorauer-Uhl
, and
G.
Striedner
,
Biotechnol. J.
14
,
1800714
(
2019
).
44.
M.
Fitzpatrick
, “
Measuring cell fluorescence using ImageJ
,” in
The Open Lab Book
(
2014
), available at https://theolb.readthedocs.io/en/latest/imaging/measuring-cell-fluorescence-using-imagej.html.
45.
H.-W.
Chen
,
C.-Y.
Huang
,
S.-Y.
Lin
,
Z.-S.
Fang
,
C.-H.
Hsu
,
J.-C.
Lin
,
Y.-I.
Chen
,
B.-Y.
Yao
, and
C.-M. J.
Hu
,
Biomaterials
106
,
111
(
2016
).
46.
A.S.
Pitek
,
A.M.
Wen
,
S.
Shukla
, and
N.F.
Steinmetz
,
Small
12
,
1758
(
2016
).
49.
B.
Yameen
,
W. I.
Choi
,
C.
Vilos
,
A.
Swami
,
J.
Shi
, and
O. C.
Farokhzad
,
J. Control. Release
190
,
485
(
2014
).
50.
J.-S.
Kim
 et al,
J. Vet. Sci.
7
,
321
(
2006
).
51.
A.
Kapara
,
V.
Brunton
,
D.
Graham
, and
K.
Faulds
,
Chem. Sci.
11
,
5819
(
2020
).
52.
53.
C.
Cruz-Oliveira
,
J. M.
Freire
,
T. M.
Conceição
,
L. M.
Higa
,
M. A.
Castanho
, and
A. T.
Da Poian
,
FEMS Microbiol. Rev.
39
,
155
(
2015
).
54.
J.
Yang
,
S.
Petitjean
,
S.
Derclaye
,
M.
Koehler
,
Q.
Zhang
,
A.C.
Dumitru
,
P.
Soumillion
, and
D.
Alsteens
,
Nat. Commun.
11
,
1
10
(
2020
).
55.
P. H.
Weigel
and
J. A.
Oka
,
J. Biol. Chem.
258
,
5089
(
1983
).
56.
J.
Chen
,
S. C.
Almo
, and
Y.
Wu
,
PLoS Comput. Biol.
13
,
e1005805
(
2017
).
57.
J. C.
Encarnação
,
P.
Barta
,
T.
Fornstedt
, and
K.
Andersson
,
Biomed. Rep.
7
,
400
(
2017
).
58.
J. A.
Aguiar
 et al,
Eur. Resp. J.
56
,
1
17
(
2020
).
59.
M. P.
Ward
,
S.
Xiao
, and
Z.
Zhang
,
Transboundary Emerg. Dis.
67
,
2313
(
2020
).
60.
K.-H.
Chan
 et al,
J. Hosp. Infect.
106
,
226
(
2020
).
61.
K. A.
Hirneisen
,
E. P.
Black
,
J. L.
Cascarino
,
V. R.
Fino
,
D. G.
Hoover
, and
K. E.
Kniel
,
Compr. Rev. Food Sci. Food Saf.
9
,
3
(
2010
).
62.
K.
Gao
,
R.
Oerlemans
, and
M. R.
Groves
,
Biophys. Rev.
1
,
85
(
2020
).
63.
J. P.
Abraham
,
B. D.
Plourde
, and
L.
Cheng
,
Rev. Med. Virol.
30
,
e2115
(
2020
).
64.
H.
Rabenau
,
J.
Cinatl
,
B.
Morgenstern
,
G.
Bauer
,
W.
Preiser
, and
H.
Doerr
,
Med. Microbiol. Immunol.
194
,
1
(
2005
).
65.
See supplementary material at https://doi.org/10.1116/6.0000743 for additional data on cell viability with S-RBD nanospheres, ACE-2 expression at different temperatures for Calu-3 and NIH-3T3 cells, temperature-dependent uptake of control and BSA-coated nanosphere, and thermal stability of the S-RBD until 60 °C.

Supplementary Material

You do not currently have access to this content.