Probabilistic fasteners are known to provide strong attachment onto their respective surfaces. Examples are Velcro® and the “3M dual lock” system. However, these systems typically only function using specific counter surfaces and are often destructive to other surfaces such as fabrics. Moreover, the design parameters to optimize their functionality are not obvious. Here, we present a surface patterned with soft micrometric features inspired by the mushroom shape showing a nondestructive mechanical interlocking and thus attachment to fabrics. We provide a scalable experimental approach to prepare these surfaces and quantify the attachment strength with rheometric and video-based analysis. In these “probabilistic fasteners,” we find that higher feature densities result in higher attachment force; however, the individual feature strength is higher on a low feature density surface. We interpret our results via a load-sharing principle common in fiber bundle models. Our work provides new handles for tuning the mechanical attachment properties of soft patterned surfaces that can be used in various applications including soft robotics.

1.
C. W.
Smith
,
S. N.
Gorb
, and
V. L.
Popov
,
Philos. Trans. R. Soc. London Ser. A
360
,
211
(
2002
).
2.
J.
Jiao
,
F.
Zhang
,
T.
Jiao
,
Z.
Gu
, and
S.
Wang
,
Adv. Sci.
5
,
1700787
(
2018
).
3.
S. N.
Gorb
,
Int. J. Insect Morphol. Embryol.
27
,
205
(
1998
).
4.
K. J.
Niklas
,
Curr. Biol.
21
,
R199
(
2011
).
5.
G.
Bauer
,
M.-C.
Klein
,
S. N.
Gorb
,
T.
Speck
,
D.
Voigt
, and
F.
Gallenmüller
,
Proc. R. Soc. B Biol. Sci.
278
,
2233
(
2011
).
6.
J.
Burris
,
S.
Lenaghan
, and
C.
Stewart
,
Plant Cell Rep.
37
,
565
(
2017
).
7.
I.
Fiorello
,
O.
Tricinci
,
G.
Adele Naselli
,
A.
Mondini
,
C.
Filippeschi
,
F.
Tramacere
,
A.
Kumar Mishra
, and
B.
Mazzolai
,
Adv. Funct. Mater.
30
,
2003380
(
2020
).
8.
T.
Zhang
,
T.
Liang
,
X.
Yue
, and
D.
Sameoto
, “Integration of thermoresponsive velcro-like adhesive for soft robotic grasping of fabrics or smooth surfaces,” in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (IEEE, Seoul, 2019), pp. 120–125.
9.
G.
de Mestral
, “Welvet type fabric and method of producing same,” U.S. patent US2717437A (1955).
10.
W. L.
Melbye
,
N. S. K.
Leigh E. Wood
,
M. D.
Lindseth
, and
D. A.
Bychinski
, “Mushroom-type hook strip for a mechanical fastener,” U.S. patent US6558602B1 (2003).
11.
I.
Fiorello
,
O.
Tricinci
,
A.
Kumar Mishra
,
F.
Tramacere
,
C.
Filippeschi
, and
B.
Mazzolai
, “Artificial system inspired by climbing mechanism of galium aparine fabricated via 3D laser lithography,” in Biomimetic and Biohybrid Systems, edited by V. Vouloutsi, J. Halloy, A. Mura, M. Mangan, N. Lepora, T. J. Prescott, and P. F. M. J. Verschure (Springer, Cham, 2018), pp. 168–178.
12.
R.
Long
,
C.-Y.
Hui
,
S.
Kim
, and
M.
Sitti
,
J. Appl. Phys.
104
,
044301
(
2008
).
13.
Y.
Mulla
,
G.
Oliveri
,
J. T. B.
Overvelde
, and
G. H.
Koenderink
,
Phys. Rev. Lett.
120
,
268002
(
2018
).
14.
I.
Fiorello
,
F.
Meder
,
O.
Tricinci
,
C.
Filippeschi
, and
B.
Mazzolai
,
Rose-Inspired Micro-device with Variable Stiffness for Remotely Controlled Release of Objects in Robotics
(
Springer
,
Cham
,
2019
), pp.
122
133
.
15.
L.
Heepe
and
S.
Gorb
,
Annu. Rev. Mater. Res.
44
,
173
(
2014
).
16.
Y.
Wang
,
H. H.
Jinyou Shao
, and
Y.
Ding
,
ACS Appl. Mater. Interfaces
6
,
2213
(
2014
).
17.
S. C. L.
Fischer
,
O.
Levy
,
E.
Kroner
,
R.
Hensel
,
J. M.
Karp
, and
E.
Arzt
,
J. Mech. Behav. Biomed. Mater.
61
,
87
(
2016
).
18.
M.
Seong
,
H.-H.
Park
,
I.
Hwang
, and
H.
Eui Jeong
,
Coatings
9
,
48
(
2019
).
19.
O.
Tricinci
,
T.
Terencio
,
B.
Mazzolai
,
N. M.
Pugno
,
F.
Greco
, and
V.
Mattoli
,
ACS Appl. Mater. Interfaces
7
,
25560
(
2015
).
20.
FORMLABS
,
Mater. High Resolut. Rapid Prototyping
,
4
(
2016
), see https://formlabs-media.formlabs.com/datasheets/Standard-DataSheet.pdf.
21.
H. G.
Andrews
and
J. P. S.
Badyal
,
J. Adhes. Sci. Technol.
28
,
1243
(
2014
).
22.
D.
Chandra
and
S.
Yang
,
Acc. Chem. Res.
43
,
1080
(
2010
).
23.
A.
Iuliano
,
E.
van der Wal
,
C. W. B.
Ruijmbeek
,
S. L. M.
in ‘t Groen
,
W. W. M.
Pim Pijnappel
,
J. C.
de Greef
, and
V.
Saggiomo
,
Adv. Mater. Technol.
5
,
2000344
(
2020
).
24.
I. D.
Johnston
,
D. K.
McCluskey
,
C. K. L.
Tan
, and
M. C.
Tracey
,
J. Micromech. Microeng.
24
,
035017
(
2014
).
25.
M.
Madsen
,
N.
Feidenhans’l
,
P.-E.
Hansen
,
J.
Garnaes
, and
K.
Dirscherl
,
J. Micromech. Microeng.
24
,
127002
(
2014
).
26.
I. N.
Sneddon
,
Int. J. Eng. Sci.
3
,
47
(
1965
).
27.
Local and Intermediate Load Sharing, edited by A. Hansen, P. C. Hemmer, and S. Pradhan (Wiley, Weinheim, 2015), Chap. 4, pp. 63–114.
28.
S.
Song
,
D.-M.
Drotlef
,
C.
Majidi
, and
M.
Sitti
,
Proc. Natl. Acad. Sci. U.S.A.
114
,
E4344
(
2017
).
29.
C.
Pang
,
D.
Kang
,
T.-I.
Kim
, and
K.-Y.
Suh
,
Langmuir
28
,
2181
(
2012
).
30.
M.
Tatari
,
A.
Mohammadi Nasab
,
K. T.
Turner
, and
W.
Shan
,
Adv. Mater. Interfaces
5
,
1800321
(
2018
).
31.
J.
Yull Park
,
S. J.
Yoo
,
E.
Joong Lee
,
D. H.
Lee
,
J.
Young Kim
, and
S.
Hoon Lee
,
Biochip J.
4
,
230
(
2010
).
32.
M.
Kim
,
B.-U.
Moon
, and
C. H.
Hidrovo
,
J. Micromech. Microeng.
23
,
095024
(
2013
).
33.
See supplementary material at http://dx.doi.org/10.1116/6.0000634 for 3D printed surfaces with variety of complex features, CAD files, recorded videos, images qualitative analysis of attachment, image analysis and table showing comparison with literature.

Supplementary Material

You do not currently have access to this content.