Many natural surfaces, including the wings of cicada insects, have shown to display bactericidal properties as a result of surface topography. Moreover, the size and distribution of the surface features (on the nano- and microscale) are known to influence the efficacy of the surface at inhibiting bacterial cell growth. While these types of natural surfaces illustrate the effect of structure on the bactericidal activity, a deeper understanding can be achieved by creating surfaces of different feature sizes. This is essential in order to understand the effects of changes of surface topography on bacteria-surface interactions. To this end, we have performed a series of replica molding processes of the wings of the Megapomponia Intermedia cicada to prepare wing replicas in polyethylene glycol (PEG), which possess the topographical features of the wing surface, with a minimum loss of feature resolution. Atomic force microscopy characterization of these patterned surfaces in both air and aqueous environments shows that by controlling the swelling characteristics of the PEG, we can control the ultimate swollen dimensions of the nanopillar structures on the surface of PEG. As a result, by using a single wing with an average nanopillar height of 220 nm, different patterned PEG samples with nanopillar heights ranging from 180 to 307 nm were produced.

1.
J.
Hasan
,
R. J.
Crawford
, and
E. P.
Ivanova
,
Trends Biotechnol.
31
,
295
(
2013
).
2.
A.
Tripathy
,
P.
Sen
,
B.
Su
, and
W. H.
Briscoe
,
Adv. Colloid Interface Sci.
248
,
85
(
2017
).
3.
A.
Elbourne
,
R. J.
Crawford
, and
E. P.
Ivanova
,
J. Colloid Interface Sci.
508
,
603
(
2017
).
4.
E. P.
Ivanova
 et al.,
Small
8
,
2489
(
2012
).
5.
S. M.
Kelleher
,
O.
Habimana
,
J.
Lawler
,
B.
O’ Reilly
,
S.
Daniels
,
E.
Casey
, and
A.
Cowley
,
ACS Appl. Mater. Interfaces
8
,
14966
(
2016
).
6.
K. B.
Bjugstad
,
D. E.
Redmond
,
K. J.
Lampe
,
D. S.
Kern
,
J. R.
Sladek
, and
M. J.
Mahoney
,
Cell Transplant
17
,
409
(
2008
).
7.
M.
Zhang
,
X. H.
Li
,
Y. D.
Gong
,
N. M.
Zhao
, and
X. F.
Zhang
,
Biomaterials
23
,
2641
(
2002
).
8.
S.
Kelleher
,
A.
Jongerius
,
A.
Loebus
,
C.
Strehmel
,
Z.
Zhang
, and
M. C.
Lensen
,
Adv. Eng. Mater.
14
,
B56
(
2012
).
9.
K.
Studer
,
C.
Decker
,
E.
Beck
, and
R.
Schwalm
,
Prog. Org. Coat.
48
,
92
(
2003
).
10.
P. J.
Flory
and
J.
Rehner
, Jr.
,
J. Chem. Phys.
11
,
512
(
1943
).
11.
S.
Kobayashi
and
K.
Müllen
,
Encyclopedia of Polymeric Nanomaterials
(
Springer
,
Berlin
,
2015
).
12.
G.
Malucelli
,
G.
Gozzelino
,
F.
Ferrero
,
R.
Bongiovanni
, and
A.
Priola
,
J. Appl. Polym. Sci.
65
,
491
(
1997
).
13.
A.
Priola
,
G.
Gozzelino
,
F.
Ferrero
, and
G.
Malucelli
,
Polymer
34
,
3653
(
1993
).
14.
M. D.
Abràmoff
,
P. J.
Magalhães
, and
S. J.
Ram
,
Biophotonics Int.
11
,
36
(
2004
).
15.
L.
Lu
,
J. Y. H.
Fuh
,
A. Y. C.
Nee
,
E. T.
Kang
,
T.
Miyazawa
, and
C. M.
Cheah
,
Mater. Res. Bull.
30
,
1561
(
1995
).
16.
Z.
Czech
,
A.
Kowalczyk
,
P.
Ragańska
, and
A.
Antosik
,
Bulg. Chem. Commun.
47
,
94
(
2015
).
17.
N. A.
Stocke
,
X.
Zhang
,
J. Z.
Hilt
, and
J. E.
DeRouchey
,
Macromol. Chem. Phys.
218
,
1600340
(
2017
).
18.
See supplementary material at http://dx.doi.org/10.1116/6.0000637 for Figs. S1 and S2.

Supplementary Material

You do not currently have access to this content.