It has long been recognized that liquid interfaces, such as the air–water interface (AWI), can enhance the formation of protein fibrils. This makes liquid interfaces attractive templates for fibril formation but fully realizing this requires knowledge of protein behavior at interfaces, which is currently lacking. To address this, molecular dynamics simulation is used to investigate fragments of amyloid beta, a model fibril forming protein, at the air–water interface. At the air–water interface, the enrichment of aggregation-prone helical conformations provides a mechanism for the enhancement of fibrillation at interfaces. The conformational ensemble at the air–water interface was also considerably reduced compared to bulk solution due to the tendency of hydrophobic side chains partitioning into the air restricting the range of conformations. Little overlap between the conformational ensembles at the AWI and in the bulk solution was found, suggesting that AWI induces the formation of a different set of structures compared to bulk solution. The smaller Aβ(16–22) and Aβ(25–35) fragments show an increase in the propensity for an ordered secondary structure at the air–water interface but with a increased propensity for turn over other motifs, illustrating the importance of intra-protein interactions for stabilizing helical and extended conformations.

1.
F.
Chiti
and
C. M.
Dobson
,
Annu. Rev. Biochem.
75
,
333
(
2006
).
2.
M. G.
Iadanza
,
M. P.
Jackson
,
E. W.
Hewitt
,
N. A.
Ranson
, and
S. E.
Radford
,
Nat. Rev. Mol. Cell Biol.
19
,
755
(
2018
).
3.
M. D.
Benson
,
J. N.
Buxbaum
,
D. S.
Eisenberg
,
G.
Merlini
,
M. J. M.
Saraiva
,
Y.
Sekijima
,
J. D.
Sipe
, and
P.
Westermark
,
Amyloid
25
,
215
(
2018
).
4.
T. P. J.
Knowles
and
R.
Mezzenga
,
Adv. Mater.
28
,
6546
(
2016
).
5.
C.
Li
,
R.
Qin
,
R.
Liu
,
S.
Miao
, and
P.
Yang
,
Biomater. Sci.
6
,
462
(
2018
).
6.
C.
Schladitz
,
E. P.
Vieira
,
H.
Hermel
, and
H.
Möhwald
,
Biophys. J.
77
,
3305
(
1999
).
7.
A.
Morinaga
,
K.
Hasegawa
,
R.
Nomura
,
T.
Ookoshi
,
D.
Ozawa
,
Y.
Goto
,
M.
Yamada
, and
H.
Naiki
,
Biochim. Biophys. Acta Proteins Proteomics
1804
,
986
(
2010
).
8.
M.
Hoernke
,
J. A.
Falenski
,
C.
Schwieger
,
B.
Koksch
, and
G.
Brezesinski
,
Langmuir
27
,
14218
(
2011
).
9.
S.
Campioni
,
G.
Carret
,
S.
Jordens
,
L.
Nicoud
,
R.
Mezzenga
, and
R.
Riek
,
J. Am. Chem. Soc.
136
,
2866
(
2013
).
10.
L.
Jean
,
C. F.
Lee
,
C.
Lee
,
M.
Shaw
, and
D. J.
Vaux
,
FASEB J.
24
,
309
(
2010
).
11.
L.
Jean
,
C. F.
Lee
, and
D. J.
Vaux
,
Biophys. J.
102
,
1154
(
2012
).
12.
N. B.
Last
,
E.
Rhoades
, and
A. D.
Miranker
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
9460
(
2011
).
13.
S.
Hosseinpour
,
S. J.
Roeters
,
M.
Bonn
,
W.
Peukert
,
S.
Woutersen
, and
T.
Weidner
,
Chem. Rev.
120
,
3420
(
2020
).
14.
F. A.
Husband
,
M. J.
Garrood
,
A. R.
Mackie
,
G. R.
Burnett
, and
P. J.
Wilde
,
J. Agric. Food Chem.
49
,
859
(
2001
).
15.
A. J.
Miles
and
B. A.
Wallace
,
Chem. Soc. Rev.
35
,
39
(
2006
).
16.
D. J.
Earl
and
M. W.
Deem
,
Phys. Chem. Chem. Phys.
7
,
3910
(
2005
).
17.
A.
Laio
and
F. L.
Gervasio
,
Rep. Prog. Phys.
71
,
126601
(
2008
).
19.
D. L.
Cheung
,
J. Chem. Phys.
147
,
195101
(
2017
).
20.
D. L.
Cheung
,
J. Chem. Phys.
151
,
064706
(
2019
).
21.
M.
Deighan
and
J.
Pfaendtner
,
Langmuir
29
,
7999
(
2013
).
22.
D. L.
Cheung
,
Biointerphases
15
,
051001
(
2020
).
23.
A. K.
Paravastu
,
R. D.
Leapman
,
W.-M.
Yau
, and
R.
Tycko
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
18349
(
2008
).
24.
L.
Millucci
,
L.
Ghezzi
,
G.
Bernardini
, and
A.
Santucci
,
Curr. Protein Pept. Sci.
11
,
54
(
2010
).
25.
L.
Bellucci
,
A.
Ardèvol
,
M.
Parrinello
,
H.
Lutz
,
H.
Lu
,
T.
Weidner
, and
S.
Corni
,
Nanoscale
8
,
8737
(
2016
).
26.
L.
Bellucci
,
G.
Bussi
,
R.
Di Felice
, and
S.
Corni
,
Nanoscale
9
,
2279
(
2017
).
27.
O.
Crescenzi
,
S.
Tomaselli
,
R.
Guerrini
,
S.
Salvadori
,
A. M.
D’Ursi
,
P. A.
Temussi
, and
D.
Picone
,
Eur. J. Biochem.
269
,
5642
(
2002
).
28.
A. M.
D’Ursi
,
M. R.
Armenante
,
R.
Guerrini
,
S.
Salvadori
,
G.
Sorrentino
, and
D.
Picone
,
J. Med. Chem.
47
,
4231
(
2004
).
29.
P.
Liu
,
B.
Kim
,
R. A.
Friesner
, and
B. J.
Berne
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
13749
(
2005
).
30.
L.
Wang
,
R. A.
Friesner
, and
B. J.
Berne
,
J. Phys. Chem. B
115
,
9431
(
2011
).
31.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
32.
A. K.
Smith
,
C.
Lockhart
, and
D. K.
Klimov
,
J. Chem. Theory Comput.
12
,
5201
(
2016
).
33.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
34.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
35.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
36.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E.
M. Fraaije
,
J. Comput. Chem.
18
,
1463
(
1997
).
37.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
38.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
39.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1–2
,
19
(
2015
).
40.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
,
Comput. Phys. Commun.
185
,
604
(
2014
).
41.
X.
Daura
,
K.
Gademann
,
B.
Jaun
,
D.
Seebach
,
W. F.
Van Gunsteren
, and
A. E.
Mark
,
Angew. Chem. Int. Ed.
38
,
236
(
1999
).
42.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
,
J. Comput. Chem.
32
,
2319
(
2011
).
43.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graph.
14
,
33
(
1996
).
44.
M.
Heinig
and
D.
Frishman
,
Nucleic Acids Res.
32
,
500
(
2004
).
45.
D.
Jiang
,
K. L.
Dinh
,
T. C.
Ruthenburg
,
Y.
Zhang
,
L.
Su
,
D. P.
Land
, and
F.
Zhou
,
J. Phys. Chem. B
113
,
3160
(
2009
).
46.
A.
De Simone
,
C.
Kitchen
,
A. H.
Kwan
,
M.
Sunde
,
C. M.
Dobson
, and
D.
Frenkel
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
6951
(
2012
).
47.
C.
Dalgicdir
,
C.
Globisch
,
C.
Peter
, and
M.
Sayar
,
PLoS Comput. Biol.
11
,
e1004328
(
2015
).
48.
C.
Dalgicdir
,
O.
Sensoy
,
C.
Peter
, and
M.
Sayar
,
J. Chem. Phys.
139
,
234115
(
2013
).
49.
M.
Stefani
,
Int. J. Mol. Sci.
9
,
2515
(
2008
).
50.
D. E.
Koshland
,
Proc. Natl. Acad. Sci. U.S.A.
44
,
98
(
1958
).
You do not currently have access to this content.