Surface modification of biomaterials is a strategy used to improve cellular and in vivo outcomes. However, most studies do not evaluate the lifetime of the introduced surface layer, which is an important aspect affecting how a biomaterial will interact with a cellular environment both in the short and in the long term. This study evaluated the surface layer stability in vitro in buffer solution of materials produced from poly(lactic-co-glycolic acid) (50:50) and polycaprolactone modified by hydrolysis and/or grafting of hydrophilic polymers using grafting from approaches. The data presented in this study highlight the shortcomings of using model substrates (e.g., spun-coated films) rather than disks, particles, and scaffolds. It also illustrates how similar surface modification strategies in some cases result in very different lifetimes of the surface layer, thus emphasizing the need for these studies as analogies cannot always be drawn.

1.
M.
Bartnikowski
,
T. R.
Dargaville
,
S.
Ivanovski
, and
D. W.
Hutmacher
,
Prog. Polym. Sci.
96
,
1
(
2019
).
2.
C.
Martins
,
F.
Sousa
,
F.
Araújo
, and
B.
Sarmento
,
Adv. Healthcare Mater.
7
,
1701035
(
2018
).
3.
I.
Manavitehrani
,
A.
Fathi
,
H.
Badr
,
S.
Daly
,
A. N.
Shirazi
, and
F.
Dehghani
,
Polymers
8
,
20
(
2016
).
4.
L. N.
Woodard
and
M. A.
Grunlan
,
ACS Macro Lett.
7
,
976
(
2018
).
5.
E. M.
Elmowafy
,
M.
Tiboni
, and
M. E.
Soliman
,
Biocompatibility, Biodegradation and Biomedical Applications of Poly (Lactic Acid)/ Poly (Lactic-co-Glycolic Acid) Micro and Nanoparticles
(
Springer, Singapore
,
2019
).
6.
L.
Grøndahl
,
A.
Chandler-Temple
, and
M.
Trau
,
Biomacromolecules
6
,
2197
(
2005
).
7.
T. I.
Croll
,
A. J.
O’Connor
,
G. W.
Stevens
, and
J. J.
Cooper-White
,
Biomacromolecules
5
,
463
(
2004
).
8.
T. N.
Nguyen
,
A.
Rangel
, and
V.
Migonney
,
Polym. Degrad. Stab.
176
,
109154
(
2020
).
9.
J. Z.
Luk
,
J.
Cooper-White
,
L.
Rintoul
,
E.
Taran
, and
L.
Grøndahl
,
J. Mater. Chem. B
1
,
4171
(
2013
).
10.
G.
Marletta
,
G.
Ciapetti
,
C.
Satriano
,
S.
Pagani
, and
N.
Baldini
,
Biomaterials
26
,
4793
(
2005
).
11.
K.
Gross
,
J. K.
Venkatesan
,
C.
Falentin-Daudré
,
C.
Vaquette
,
V.
Migonney
, and
M.
Cucchiarini
,
Osteoarthr. Cartil.
28
,
S520
(
2020
).
12.
J. O.
Jeong
,
S. I.
Jeong
,
J. S.
Park
,
H. J.
Gwon
,
S. J.
Ahn
,
H.
Shin
,
J. Y.
Lee
, and
Y. M.
Lim
,
RSC Adv.
7
,
8963
(
2017
).
13.
A.
Yeo
,
W. J.
Wong
, and
S. H.
Teoh
,
J. Biomed. Mater. Res. Part A
93
,
1358
(
2010
).
14.
A. L.
Mutch
, and
L.
Grondahl
,
Biointerphases
15
,
061006
(
2018
).
15.
Z.
Yang
,
M.
Zhengwei
,
S.
Huayu
, and
G.
Changyou
,
Sci. China Chem.
55
,
2419
(
2012
).
16.
Amélie Leroux, Tuan Nguyen, André Rangel, Isabelle Cacciapuoti, Delphine Duprez, David G. Castner, and Véronique Migonney
,
Biointerphases
15
,
061006
(
2020
).
17.
D.
Hegemann
,
I.
Indutnyi
,
L.
Zajíčková
,
E.
Makhneva
,
Z.
Farka
,
Y.
Ushenin
, and
M.
Vandenbossche
,
Plasma Processes Polym.
15
,
1800090
(
2018
).
18.
M.
Drabik
,
D.
Lohmann
,
J.
Hanus
,
A.
Shelemin
,
P.
Rupper
,
H.
Biederman
, and
D.
Hegemann
,
Plasma
1
,
156
(
2018
).
19.
L.
Lee
,
K. Y.
Cooper-White
,
J. J.
Keen
, and
I.
Grøndahl
,
Tissue Enineering: Roles Materials and Applications
, edited by
S. J.
Barnes
and
L. P.
Harris
(
Nova
, New York,
2008
).
20.
F.
Cheng
,
L. J.
Gamble
, and
D. G.
Castner
,
Anal. Chem.
80
,
2564
(
2008
).
21.
D. G.
Castner
,
Biointerphases
12
,
02C301
(
2017
).
22.
M.
Xu
,
C.
Guo
,
H.
Dou
,
Y.
Zuo
,
Y.
Sun
,
J.
Zhang
, and
W.
Li
,
Polym. Chem.
10
,
3786
(
2019
).
23.
E.
Vey
,
C.
Roger
,
L.
Meehan
,
J.
Booth
,
M.
Claybourn
,
A. F.
Miller
, and
A.
Saiani
,
Polym. Degrad. Stab.
93
,
1869
(
2008
).
24.
C. X. F.
Lam
,
D. W.
Hutmacher
,
J.-T.
Schantz
,
M. A.
Woodruff
, and
S. H.
Teoh
,
J. Biomed. Mater. Res. Part A
90A
,
906
(
2009
).
25.
L.
Grøndahl
and
J. Z.
Luk
,
Biointerfaces: Where Materials Meets Biology
, edited by D. M. Hutmacher and W. Chrzanowski (The Royal Society of Chemistry, Cambridge, 2014) pp. 312
26.
T. D.
Brown
,
P. D.
Dalton
, and
D. W.
Hutmacher
,
Adv. Mater.
23
,
5651
(
2011
).
27.
D. K.
Gilding
and
A. M.
Reed
,
Polymer
20
,
1459
(
1979
).
29.
W.
Friess
and
M.
Schlapp
,
J. Pharm. Sci.
91
,
845
(
2002
).
30.
J. Z.
Luk
,
J.
Cork
,
J.
Cooper-White
, and
L.
Grøndahl
,
Langmuir
31
,
1746
(
2015
).
31.
A. K.
Biswas
,
M. R.
Islam
,
Z. S.
Choudhury
,
A.
Mostafa
, and
M. F.
Kadir
,
Adv. Nat. Sci. Nanosci. Nanotechnol.
5
,
043001
(
2014
).
32.
E.
Hewitt
,
S.
Mros
,
M.
Mcconnell
,
J. D.
Cabral
, and A. Ali,
Biomed. Mater.
4
, 055013 (
2019
).
33.
N.
Abbasi
,
S.
Ivanovski
,
K.
Gulati
,
R. M.
Love
, and
S.
Hamlet
,
Biomater. Res.
24
, 2
1
(
2020
).
34.
P. B.
Warren
,
Z. G.
Davis
, and
M. B.
Fisher
,
J. Mech. Behav. Biomed. Mater.
99
,
153
(
2019
).
35.
D.
Gupta
,
A. K.
Singh
,
N.
Kar
,
A.
Dravid
, and
J.
Bellare
,
Mater. Sci. Eng. C
98
,
602
(
2019
).
36.
L. A.
Bosworth
,
W.
Hu
,
Y.
Shi
, and
S. H.
Cartmell
,
J. Nanomater.
2019
,
1
11
(
2019
).
37.
A. C.
Doty
,
Y.
Zhang
,
D. G.
Weinstein
,
Y.
Wang
,
S.
Choi
,
W.
Qu
,
S.
Mittal
, and
S. P.
Schwendeman
,
Eur. J. Pharm. Biopharm.
113
,
24
(
2017
).
38.
M.
Ghezzi
,
S. C.
Thickett
,
A. M.
Telford
,
C. D.
Easton
,
L.
Meagher
, and
C.
Neto
,
Langmuir
30
,
11714
(
2014
).
39.
G.
Schliecker
,
C.
Schmidt
,
S.
Fuchs
, and
T.
Kissel
,
Biomaterials
24
,
3835
(
2003
).
40.
S. K.
Sahoo
,
J.
Panyam
,
S.
Prabha
, and
V.
Labhasetwar
,
J. Controlled Release
82
,
105
(
2002
).
41.
K.
Khare
,
J.
Zhou
, and
S.
Yang
,
Langmuir
25
,
12794
(
2009
).
42.
S.
Yang
,
K.
Khare
, and
P. C.
Lin
,
Adv. Funct. Mater.
20
,
2550
(
2010
).
43.
H. S.
Kim
and
A. J.
Crosby
,
Adv. Mater.
23
,
4188
(
2011
).
44.
M.
Guvendiren
,
S.
Yang
, and
J. A.
Burdick
,
Adv. Funct. Mater.
19
,
3038
(
2009
).
45.
E.
Makhneva
,
L.
Barillas
,
K.-D.
Weltmann
, and
K.
Fricke
,
Biointerphases
15
,
061001
(
2020
).
46.
C.
Neto
,
Phys. Chem. Chem. Phys.
9
,
149
(
2007
).
47.
R.
Xie
,
A.
Karim
,
J. F.
Douglas
,
C. C.
Han
, and
R. A.
Weiss
,
Phys. Rev. Lett.
81
,
1251
(
1998
).
48.
E. V.
Giger
,
B.
Castagner
, and
J.
Leroux
,
J. Controlled Release
167
,
175
(
2013
).
49.
E. S.
Permyakova
,
J.
Polčak
,
P. V.
Slukin
,
S. G.
Ignatov
,
N. A.
Gloushankova
,
L.
Zajíčková
,
D. V.
Shtansky
, and
A.
Manakhov
,
Mater. Des.
153
,
60
(
2018
).
50.
H.
Otsuka
,
Y.
Nagasaki
, and
K.
Kataoka
,
Biomacromolecules
1
,
39
(
2000
).
51.
M. T.
Zumstein
,
H. P. E.
Kohler
,
K.
McNeill
, and
M.
Sander
,
Environ. Sci. Technol.
50
,
197
(
2016
).
52.
G.
Gyulai
,
C. B.
Pénzes
,
M.
Mohai
,
T.
Lohner
,
P.
Petrik
,
S.
Kurunczi
, and
T. E.
Kiss
,
J. Colloid Interface Sci.
362
,
600
(
2011
).
53.
S. V.
Anantakrishnan
and
R. V.
Venkataratnam
,
Proc. Indian Acad. Sci. Sect. A
66
,
40
(
1967
).
54.
See supplementary material at http://dx.doi.org/10.1116/6.0000687 for DLS intensity based particle size distributions (Figure S1 and S2); AFM data for thickness estimation of PLGA film (Figure S3); XPS data of PLGA film (Figure S4); PCL film and disk AFM and SEM data (Figure S5); XPS of grafted PCL films and disks (Figure S6); XPS data of PCL scaffold samples (Figure S7); SEM data of PCL scaffold samples (Figure S8).

Supplementary Material

You do not currently have access to this content.