Plasma polymers derived from oxazoline precursors present a range of versatile properties that is fueling their use as biomaterials. However, coatings deposited from commonly used methyl and ethyl oxazoline precursors can be sensitive to the plasma deposition conditions. In this work, we used various spectroscopic methods (ellipsometry, x-ray photoelectron spectroscopy, and time of flight secondary ion mass spectrometry) and cell viability assays to evaluate the transferability of deposition conditions from the original plasma reactor developed by Griesser to a new wider, reactor designed for upscaled biosensors applications. The physicochemical properties, reactivity, and biocompatibility of films deposited from 2-isopropenyl-2-oxazoline were investigated. Thanks to the availability of an unsaturated pendant group, the coatings obtained from this oxazoline precursor are more stable and reproducible over a range of deposition conditions while retaining reactivity toward ligands and biomolecules. This study identified films deposited at 20 W and 0.012 mbar working pressure as being the best suited for biosensor applications.

1.
M. N.
Ramiasa
,
A. A.
Cavallaro
,
A.
Mierczynska
,
S. N.
Christo
,
J. M.
Gleadle
,
J. D.
Hayball
, and
K.
Vasilev
,
Chem. Commun.
51
,
4279
(
2015
).
2.
S.
Bhatt
,
J.
Pulpytel
,
M.
Mirshahi
, and
F.
Arefi-Khonsari
,
Plasma Process. Polym.
12
,
519
(
2015
).
3.
M. N.
Macgregor-Ramiasa
,
A. A.
Cavallaro
, and
K.
Vasilev
,
J. Mater. Chem. B
3
,
6327
(
2015
).
4.
S.
Zanini
,
L.
Zoia
,
E. C.
Dell’Orto
,
A.
Natalello
,
A. M.
Villa
,
R. D.
Pergola
, and
C.
Riccardi
,
Mater. Des.
108
,
791
(
2016
).
5.
K.
Vasilev
,
A.
Michelmore
,
H. J.
Griesser
, and
R. D.
Short
,
Chem. Commun.
2009
,
3600
.
6.
K.
Vasilev
,
A.
Michelmore
,
P.
Martinek
,
J.
Chan
,
V.
Sah
,
H. J.
Griesser
, and
R. D.
Short
,
Plasma Process. Polym.
7
,
824
(
2010
).
7.
J. L.
Hernandez-Lopez
 et al.,
Mater. Sci. Eng. C
23
,
267
(
2003
).
8.
M.
Macgregor
and
K.
Vasilev
,
Materials
12
,
191
(
2019
).
9.
A. A.
Cavallaro
,
M. N.
Macgregor-Ramiasa
, and
K.
Vasilev
,
ACS Appl. Mater. Interfaces
8
,
6354
(
2016
).
10.
M.
Macgregor-Ramiasa
,
K.
McNicholas
,
K.
Ostrikov
,
J.
Li
,
M.
Michael
,
J. M.
Gleadle
, and
K.
Vasilev
,
Biosens. Bioelectron.
96
,
373
(
2017
).
11.
R. M.
Visalakshan
 et al.,
ACS Appl. Mater. Interfaces
11
,
27615
(
2019
).
12.
Z.
Chen
,
R. M.
Visalakshan
,
J.
Guo
,
F.
Wei
,
L.
Zhang
,
L.
Chen
,
Z.
Lin
,
K.
Vasilev
, and
Y.
Xiao
,
Acta Biomater.
96
,
568
(
2019
).
13.
S. A.
Al-Bataineh
,
A. A.
Cavallaro
,
A.
Michelmore
,
M. N.
Macgregor
,
J. D.
Whittle
, and
K.
Vasilev
,
Plasma Process. Polym.
16
,
1900104
(
2019
).
14.
M.
MacGregor
,
U.
Sinha
,
R. M.
Visalakshan
,
A.
Cavallaro
, and
K.
Vasilev
,
Plasma Process. Polym.
16
,
1800130
(
2019
).
15.
S.
Zanini
,
L.
Zoia
,
R.
Della Pergola
, and
C.
Riccardi
,
Surf. Coat. Technol.
334
,
173
(
2018
).
16.
S.
Zanini
,
M.
Lehocky
,
J.
Lopez-Garcia
, and
C.
Riccardi
,
Thin Solid Films
677
,
55
(
2019
).
17.
M. C.
MacGregor-Ramiasa
,
A.
Visalakshan
,
R. M. L.
Gonzalez
, and
K.
Vasilev
, in
Chemeca 2016: Chemical Engineering—Regeneration, Recovery and Reinvention
(
Engineers Australia
,
Adelaide
,
2016
), pp.
302
312
.
18.
M. N.
Macgregor
,
A.
Michelmore
,
H.
Safizadeh Shirazi
,
J.
Whittle
, and
K.
Vasilev
,
Chem. Mater.
29
,
8047
(
2017
).
20.
A. M.
Sandstrom
,
M.
Jasieniak
,
H. J.
Griesser
,
L.
Grøndahl
, and
J. J.
Cooper-White
,
Plasma Process. Polym.
10
,
19
(
2013
).
21.
S.
Saboohi
,
B. R.
Coad
,
A.
Michelmore
,
R. D.
Short
, and
H. J.
Griesser
,
ACS Appl. Mater. Interfaces
8
,
16493
(
2016
).
22.
R. M.
Visalakshan
,
M. N.
MacGregor
,
A. A.
Cavallaro
,
S.
Sasidharan
,
A.
Bachhuka
,
A. M.
Mierczynska-Vasilev
,
J. D.
Hayball
, and
K.
Vasilev
,
ACS Appl. Nano Mater.
1
,
2796
(
2018
).
23.
S.
Taheri
,
J.-C.
Ruiz
,
A.
Michelmore
,
M.
Macgregor
,
R.
Förch
,
P.
Majewski
, and
K.
Vasilev
,
J. Phys. Chem. C
122
,
14986
(
2018
).
24.
R. M.
Visalakshan
,
A. A.
Cavallaro
,
M. N.
MacGregor
,
E. P.
Lawrence
,
K.
Koynov
,
J. D.
Hayball
, and
K.
Vasilev
,
Adv. Funct. Mater.
29
,
1807453
(
2019
).
25.
H. S.
Shirazi
 et al.,
Biointerphases
15
,
031002
(
2020
).
26.
K. M.
Chan
,
K.
Vasilev
,
H. S.
Shirazi
,
K.
McNicholas
,
J.
Li
,
J.
Gleadle
, and
M.
Macgregor
,
Photodiagn. Photodyn. Ther.
28
,
238
(
2019
).
27.
K.
Ostrikov
,
T.
Michl
,
M.
MacGregor
, and
K.
Vasilev
,
ACS Appl. Bio Mater.
2
,
3730
(
2019
).
28.
H.
Yasuda
,
Plasma Polymerization
(
Academic
,
New York
,
1985
).
29.
D.
Hegemann
, in
Comprehensive Materials Processing
, edited by
S.
Hashmi
,
G. F.
Batalha
,
C. J.
Van Tyne
, and
B.
Yilbas
(
Elsevier
,
Oxford
,
2014
), pp.
201
228
.
30.
D.
Barton
,
A. G.
Shard
,
R. D.
Short
, and
J. W.
Bradley
,
J. Phys. Chem. B
109
,
3207
(
2005
).
31.
A.
Michelmore
,
D. A.
Steele
,
D. E.
Robinson
,
J. D.
Whittle
, and
R. D.
Short
,
Soft Matter
9
,
6167
(
2013
).
32.
S.
Saboohi
,
B. R.
Coad
,
H. J.
Griesser
,
A.
Michelmore
, and
R. D.
Short
,
Phys. Chem. Chem. Phys.
19
,
5637
(
2017
).
33.
E.
Kasparek
,
D.
Thiry
,
J. R.
Tavares
,
M. R.
Wertheimer
,
R.
Snyders
, and
P.-L.
Girard-Lauriault
,
Plasma Processes Polym.
15
,
1800036
(
2018
).
34.
L.
Gonzales-Garcia
,
M.
Macgregor-Ramiasa
, and
K.
Vasilev
, “
Protein interactions with nanoengineered polyoxazoline surfaces generated via plasma deposition
,”
Langmuir
33
(
29
),
7322
–7331 (
2017
).
35.
M.
Holzweber
,
T.
Heinrich
,
V.
Kunz
,
S.
Richter
,
C. H. H.
Traulsen
,
C. A.
Schalley
, and
W. E. S.
Unger
,
Anal. Chem.
86
,
5740
(
2014
).
36.
A. J.
Ward
and
R. D.
Short
,
Polymer
36
,
3439
(
1995
).
37.
N. G.
Welch
,
R. M. T.
Madiona
,
T. B.
Payten
,
C. D.
Easton
,
L.
Pontes-Braz
,
N.
Brack
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Acta Biomater.
55
,
172
(
2017
).
38.
F.
Liu
,
M.
Dubey
,
H.
Takahashi
,
D. G.
Castner
, and
D. W.
Grainger
,
Anal. Chem.
82
,
2947
(
2010
).
39.
See the supplementary material at http://dx.doi.org/10.1116/6.0000499 for reactor 2 engineering scheme, XPS full spectra, detailed ToF SIMS and cell viability study.

Supplementary Material

You do not currently have access to this content.