Nanoparticles (NPs) that are exposed to blood are coated with an assortment of proteins that establish their biological identity by forming the interface between the NP and the cells and tissues of the body. The biological relevance of this protein corona is often overlooked during toxicological assessments of NPs. However, accurate interpretation of biological outcomes following exposure to NPs, including activation of coagulation, opsonization of pathogens, and cellular phagocytosis, must take this adsorbed proteome into account. In this study, we examined protein coronas on the surface of five poly(acrylic acid) (PAA) metal-oxide NPs (TiO2, CeO2, Fe2O3, ZnO, and PAA-capsules) following exposure to human plasma for key markers of various host response pathways, including humoral immunity and coagulation. We also evaluated the impacts of pre-exposing serum proteins to PAA-NPs on the opsonization and phagocytosis of bacteria by two immune cell lines. Results demonstrated that each PAA-NP type adsorbed a unique profile of blood proteins and that protein-coated PAA-NPs significantly inhibited human plasma coagulation with PAA-zinc oxide NPs and their associated proteome fully abrogating clotting. Protein-coated PAA-NPs also resulted in a 50% increase in phagocytic activity of RBL-2H3 cells and a 12.5% increase in phagocytic activity in the RAW 264.7 cell line. We also identified numerous structural, coagulation, and immune-activating proteins in the adsorbed protein corona, which resulted in altered biological function. Overall, our findings demonstrate that the formation of protein coronas on the surface of NPs plays an important role in directing the biological outcomes of opsonization, cell phagocytosis, and blood coagulation.

1.
I.
Lynch
and
K. A.
Dawson
,
Nano Today
3
,
40
(
2008
).
2.
M. P.
Monopoli
,
C.
Åberg
,
A.
Salvati
, and
K. A.
Dawson
,
Nat. Nanotechnol.
7
,
779
(
2012
).
3.
C. D.
Walkey
 et al.,
ACS Nano
8
,
2439
(
2014
).
4.
F.
Wang
 et al.,
Nanomed. Nanotechnol. Biol. Med.
9
,
1159
(
2013
).
5.
S.
Lee
 et al.,
Environ. Sci. Technol.
48
,
10291
(
2014
).
6.
E.
Casals
,
T.
Pfaller
,
A.
Duschl
,
G. J.
Oostingh
, and
V. F.
Puntes
,
Small Weinh. Bergstr. Ger.
7
,
3479
(
2011
).
7.
G.
Maiorano
 et al.,
ACS Nano
4
,
7481
(
2010
).
8.
V. M.
Miller
 et al.,
Nanomedicine
4
,
725
(
2009
).
9.
S.
Shrivastava
 et al.,
ACS Nano
3
,
1357
(
2009
).
10.
Y.
Tian
,
Y.
Zhao
,
W.
Zheng
,
W.
Zhang
, and
X.
Jiang
,
Nanoscale
6
,
8543
(
2014
).
12.
C.
Ferriera
,
Rev. Bras. Hematol. Hemoter.
32
,
416
(
2010
).
13.
R. S.
Flannagan
,
V.
Jaumouillé
, and
S.
Grinstein
,
Annu. Rev. Pathol.
7
,
61
(
2012
).
14.
M. A.
Gordy
,
E. A.
Pila
, and
P. C.
Hanington
,
Fish Shellfish Immunol.
46
,
39
(
2015
).
15.
D. M. E.
Lillico
 et al.,
J. Leukocyte Biol.
98
,
235
(
2015
).
16.
K. M.
Pondman
 et al.,
J. Biomed. Nanotechnol.
12
,
197
(
2016
).
17.
S. T.
Reddy
 et al.,
Nat. Biotechnol.
25
,
1159
(
2007
).
18.
H.
Molina
,
Rheum. Dis. Clin. North Am.
30
,
1
(
2004
).
19.
A.
Iwasaki
and
R.
Medzhitov
,
Nat. Immunol.
16
,
343
(
2015
).
20.
C. A.
Janeway
and
R.
Medzhitov
,
Annu. Rev. Immunol.
20
,
197
(
2002
).
22.
K. A.
Binnemars-Postma
,
H. W.
Ten Hoopen
,
G.
Storm
, and
J.
Prakash
,
Nanomed.
11
,
2889
(
2016
).
23.
J.
Chen
,
X.
Dong
,
Y.
Xin
, and
M.
Zhao
,
Aquat. Toxicol.
101
,
493
(
2011
).
24.
Z. J.
Deng
 et al.,
Nanotechnology
20
,
455101
(
2009
).
25.
B.
Ekstrand-Hammarström
 et al.,
Biomaterials
51
,
58
(
2015
).
26.
A. E.
Engberg
 et al.,
J. Biomed. Mater. Res. A
97
,
74
(
2011
).
27.
28.
A. N.
Ilinskaya
and
M. A.
Dobrovolskaia
,
Nanomed.
8
,
773
(
2013
).
29.
30.
F.
Li
,
H.
Pham
, and
D. J.
Anderson
, U.S. patent 8084397 (27 December 2011), see http://www.google.ca/patents/US8084397.
31.
R. M.
Molnar
,
M.
Bodnar
,
J. F.
Hartmann
, and
J.
Borbely
,
Colloid Polym. Sci.
287
,
739
(
2009
).
32.
L. C.
Felix
,
V. A.
Ortega
,
J. D.
Ede
, and
G. G.
Goss
,
Environ. Sci. Technol.
47
,
6589
(
2013
).
33.
V. A.
Ortega
 et al.,
Environ. Sci. Nano
7
,
1912
(
2020
).
34.
V. A.
Ortega
,
J. D.
Ede
,
D.
Boyle
,
J. L.
Stafford
, and
G. G.
Goss
,
Adv. Sci.
2
(
11
),
1500104
(
2015
).
35.
L. C.
Felix
,
V. A.
Ortega
, and
G. G.
Goss
,
Aquat. Toxicol.
192
,
58
(
2017
).
36.
37.
V. A.
Ortega
,
B. A.
Katzenback
,
J. L.
Stafford
,
M.
Belosevic
, and
G. G.
Goss
,
Nanotoxicology
9
,
23
(
2015
).
38.
M. S.
Bahniuk
,
H.
Pirayesh
,
H. D.
Singh
,
J. A.
Nychka
, and
L. D.
Unsworth
,
Biointerphases
7
,
41
(
2012
).
39.
R. M.
Cornelius
and
J. L.
Brash
,
J. Biomater. Sci. Polym. Ed.
4
,
291
(
1993
).
40.
N.
Safaei Nikouei
 et al.,
Acta Biomater.
12
,
81
(
2015
).
41.
H.
Yogasundaram
 et al.,
Int. J. Biomater.
2012
,
584060
(
2012
).
42.
S.
Abraham
,
A.
So
, and
L. D.
Unsworth
,
Biomacromolecules
12
,
3567
(
2011
).
43.
D.
Anderson
,
J. A.
Dinglasan
, and
N.
Loukine
, U.S. patent 7967890B2 (28 June 2011), see http://www.google.ca/patents?id=rTTnAQAAEBAJ.
44.
L. V.
Stebounova
,
E.
Guio
, and
V. H.
Grassian
,
J. Nanoparticle Res.
13
,
233
(
2011
).
45.
H.
Heberle
,
G. V.
Meirelles
,
F. R.
da Silva
,
G. P.
Telles
, and
R.
Minghim
,
BMC Bioinf.
16
,
169
(
2015
).
46.
T. M.
Scown
 et al.,
Toxicol. Sci.
109
,
372
(
2009
).
47.
M. B.
Heringa
 et al.,
Part. Fibre Toxicol.
15
,
1
(
2018
).
48.
C.
Rompelberg
 et al.,
Nanotoxicology
10
,
1404
(
2016
).
49.
A.
Weir
,
P.
Westerhoff
,
L.
Fabricius
,
K.
Hristovski
, and
N.
von Goetz
,
Environ. Sci. Technol.
46
,
2242
(
2012
).
50.
P.
del Pino
 et al.,
Mater. Horiz.
1
,
301
(
2014
).
51.
C. C.
Fleischer
and
C. K.
Payne
,
Acc. Chem. Res.
47
,
2651
(
2014
).
52.
M. P.
Monopoli
,
A. S.
Pitek
,
I.
Lynch
, and
K. A.
Dawson
, “
Formation and characterization of the nanoparticle–protein corona
,” in
Nanomaterial Interfaces in Biology: Methods and Protocols
,
P.
Bergese
and
K.
Hamad-Schifferli
(
Humana
,
Totowa
,
NJ
,
2013
), pp.
137
155
.
53.
P.
Wojciechowski
,
P.
Ten Hove
, and
J. L.
Brash
,
J. Colloid Interface Sci.
111
,
455
(
1986
).
54.
L. D.
Unsworth
,
H.
Sheardown
, and
J. L.
Brash
,
Langmuir ACS J. Surf. Colloids
21
,
1036
(
2005
).
55.
L. D.
Unsworth
,
H.
Sheardown
, and
J. L.
Brash
,
Biomaterials
26
,
5927
(
2005
).
56.
R. M.
Cornelius
,
J.
Macri
,
K. M.
Cornelius
, and
J. L.
Brash
,
Langmuir ACS J. Surf. Colloids
31
,
12087
(
2015
).
57.
R. M.
Cornelius
,
J.
Macri
,
K. M.
Cornelius
, and
J. L.
Brash
,
Biointerphases
11
,
029810
(
2016
).
58.
M. S.
Bahniuk
,
A. K.
Alshememry
, and
L. D.
Unsworth
,
Biointerphases
15
,
021007
(
2020
).
59.
P. M.
Kelly
 et al.,
Nat. Nanotechnol.
10
,
472
(
2015
).
61.
C.
Vogt
 et al.,
PloS One
10
(
10
),
e0129008
(
2015
).
62.
A. R.
Petosa
,
S. J.
Brennan
,
F.
Rajput
, and
N.
Tufenkji
,
Water Res.
46
,
1273
(
2012
).
63.
P.
Gresele
,
C. P.
Page
,
V.
Fuster
, and
J.
Vermylen
,
J. Thromb. Haemost.
1
,
613
(
2003
).
64.
E. W.
Davie
and
J. D.
Kulman
,
Semin. Thromb. Hemost.
32
,
3
(
2006
).
65.
S.
Inturi
 et al.,
ACS Nano
9
,
10758
(
2015
).
66.
O. A.
Hamad
 et al.,
J. Immunol.
184
,
2686
(
2010
).
67.
A. M.
Scherbart
 et al.,
Part. Fibre Toxicol.
8
,
31
(
2011
).
68.
T.
Moos
and
E. H.
Morgan
,
Cell. Mol. Neurobiol.
20
,
77
(
2000
).
69.
J. L.
Stafford
and
M.
Belosevic
,
Dev. Comp. Immunol.
27
,
539
(
2003
).
70.
J. L.
Brash
,
T. A.
Horbett
,
R. A.
Latour
, and
P.
Tengvall
,
Acta Biomater.
94
,
11
(
2019
).
71.
T. J.
MacCormack
 et al.,
Nanotoxicology
6
(
5
),
514
525
(
2012
).
72.
O.
Stueker
,
V. A.
Ortega
,
G. G.
Goss
, and
M.
Stepanova
,
Small
10
(
10
),
2006
2021
(
2014
).
73.
See supplementary material at https://doi.org/10.1116/6.0000385 for Western blot images and primary antibody information, thermogravimetric analysis plots, PAA-NP synthesis protocol, PAA-NP characterization data from previously published studies from our group, and cell phagocytosis assay development and optimization studies.

Supplementary Material

You do not currently have access to this content.