Shewanella oneidensis MR-1 is a dissimilatory metal-reducing bacterium capable of reducing various metal and sulfur compounds and precipitating them in nanoparticulate form. Here, we report the synthesis of molybdenum disulfide nanomaterials at the site of S. oneidensis biofilms grown in the presence of molybdenum trioxide and sodium thiosulfate. Samples from the growth medium were imaged using scanning electron microscopy and characterized using transmission electron microscopy, energy-dispersive x-ray spectroscopy, absorbance spectroscopy, and x-ray diffraction. These methods revealed the presence of molybdenum disulfide nanoparticle aggregates 50–300 nm in diameter with both hexagonal and rhombohedral polytypes. As a biosynthesis method for molybdenum sulfide, the use of S. oneidensis offers the advantage of significantly reduced heat and chemical solvent input compared to conventional methods of synthesizing molybdenum disulfide nanoparticles.

1.
2.
W. D.
Burgos
,
J. T.
McDonough
,
J. M.
Senko
,
G.
Zhang
,
A. C.
Dohnalkova
,
S. D.
Kelly
,
Y.
Gorby
, and
K. M.
Kemner
,
Geochim. Cosmochim. Acta
72
,
4901
(
2008
).
3.
J. M.
Jacob
,
P. N. L.
Lens
, and
R. M.
Balakrishnan
,
Microbiol. Biotechnol.
9
,
11
(
2016
).
4.
L.
Wang
,
S.
Chen
,
Y.
Ding
,
Q.
Zhu
,
N.
Zhang
, and
S.
Yu
,
J. Photochem. Photobiol. B
178
,
424
(
2018
).
5.
X.
Xiao
,
X.-B.
Ma
,
H.
Yuan
,
P.-C.
Liu
,
Y.-B.
Lei
,
H.
Xu
,
D.-L.
Du
,
J.-F.
Sun
, and
Y.-J.
Feng
,
J. Hazard. Mater.
288
,
134
(
2015
).
6.
I. R.
McFarlane
,
J. R.
Lazzari-Dean
, and
M. Y.
El-Naggar
,
Acta Biomater.
13
,
364
(
2015
).
7.
S.
Shirodkar
,
S.
Reed
,
M.
Romine
, and
D.
Saffarini
,
Environ. Microbiol.
13
,
108
(
2011
).
8.
Y. A.
Gorby
 et al,
Proc. Natl. Acad. Sci. U.S.A.
103
,
11358
(
2006
).
9.
D. H.
Limoli
,
C. J.
Jones
, and
D. J.
Wozniak
,
Bacterial Extracellular Polysaccharides in Biofilm Formation and Function, in Microbial Biofilms
, 2nd ed., edited by M. Ghannoum, M. Parsek, M. Whiteley, and P. K. Mukherjee (
ASM Press
,
Hendon, VA
,
2015
), pp.
223
247
.
10.
J.
Ha
,
A.
Gélabert
,
A. M.
Spormann
, and
G. E.
Brown
,
Geochim. Cosmochim. Acta
74
,
1
(
2010
).
11.
B.
Mishra
,
M.
Boyanov
,
B. A.
Bunker
,
S. D.
Kelly
,
K. M.
Kemner
, and
J. B.
Fein
,
Geochim. Cosmochim. Acta
74
,
4219
(
2010
).
12.
S.
De Corte
,
T.
Hennebel
,
S.
Verschuere
,
C.
Cuvelier
,
W.
Verstraete
, and
N.
Boon
,
J. Chem. Technol. Biotechnol.
86
,
547
(
2011
).
13.
D. E.
Ross
,
J. M.
Flynn
,
D. B.
Baron
,
J. A.
Gralnick
, and
D. R.
Bond
,
PLoS One
6
,
e16649
(
2011
).
14.
E.
Marsili
,
D. B.
Baron
,
I. D.
Shikhare
,
D.
Coursolle
,
J. A.
Gralnick
, and
D. R.
Bond
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
3968
(
2008
).
15.
D.
Sarkar
,
W.
Liu
,
X.
Xie
,
A. C.
Anselmo
,
S.
Mitragotri
, and
K.
Banerjee
,
ACS Nano
8
,
3992
(
2014
).
16.
V.
Georgakilas
,
M.
Otyepka
,
A. B.
Bourlinos
,
V.
Chandra
,
N.
Kim
,
K. C.
Kemp
,
P.
Hobza
,
R.
Zboril
, and
K. S.
Kim
,
Chem. Rev.
112
,
6156
(
2012
).
17.
J.
Chen
,
N.
Kuriyama
,
H.
Yuan
,
H. T.
Takeshita
, and
T.
Sakai
,
J. Am. Chem. Soc.
123
,
11813
(
2001
).
18.
H.
Wu
,
R.
Yang
,
B.
Song
,
Q.
Han
,
J.
Li
,
Y.
Zhang
,
Y.
Fang
,
R.
Tenne
, and
C.
Wang
,
ACS Nano
5
,
1276
(
2011
).
19.
S.
Alkis
,
T.
Öztaş
,
L. E.
Aygün
,
F.
Bozkurt
,
A. K.
Okyay
, and
B.
Ortaç
,
Opt. Express
20
,
21815
(
2012
).
20.
G.-Y.
Liu
,
Y.-P.
Lu
,
H.
Zhong
,
Z.-F.
Cao
, and
Z.-H.
Xu
,
Miner. Eng.
36–38
,
37
(
2012
).
21.
N.
Savjani
,
E. A.
Lewis
,
R. A. D.
Pattrick
,
S. J.
Haigh
, and
P.
O’Brien
,
RSC Adv.
4
,
35609
(
2014
).
22.
Y.-H.
Lee
 et al,
Nano Lett.
13
,
1852
(
2013
).
23.
M.
Manuja
,
V. S.
Krishnan
, and
G.
Jose
,
IOP Conf. Ser. Mater. Sci. Eng.
360
,
012015
(
2018
).
24.
D.
Dominique
,
S.
Bastide
, and
C.
Lévy-Clément
,
J. Mater. Chem.
12
,
2430
(
2002
).
25.
L. A.
Zacharoff
and
M. Y.
El-Naggar
,
Curr. Opin. Electrochem.
4
,
182
(
2017
).
26.
M. Y.
Shukor
,
M. F.
Rahman
,
Z.
Suhaili
,
N. A.
Shamaan
, and
M. A.
Syed
,
World J. Microbiol. Biotechnol.
25
,
1225
(
2009
).
27.
M. D.
Tucker
,
L. L.
Barton
, and
B. M.
Thomson
,
J. Environ. Qual.
26
,
1146
(
1997
).
28.
Y. J.
Tang
,
D.
Laidlaw
,
K.
Gani
, and
J. D.
Keasling
,
Biotechnol. Bioeng.
95
,
176
(
2006
).
29.
Deutsche Forschungsgemeinschaft and Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area
,
The MAK-Collection for Occupational Health and Safety
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2002
), pp.
200
219
.
30.
J. M.
Tiedje
,
Nat. Biotechnol.
20
,
1093
(
2002
).
31.
G.
Eda
,
H.
Yamaguchi
,
D.
Voiry
,
T.
Fujita
,
M.
Chen
, and
M.
Chhowalla
,
Nano Lett.
11
,
5111
(
2011
).
32.
B.
Cao
 et al,
Environ. Sci. Technol.
45
,
5483
(
2011
).
33.
I. B.
Beech
and
C. W. S.
Cheung
,
Int. Biodeterior. Biodegrad.
35
,
59
(
1995
).
34.
S.
Najmaei
,
Z.
Liu
,
P. M.
Ajayan
, and
J.
Lou
,
Appl. Phys. Lett.
100
,
013106
(
2012
).
35.
G.
Wei
,
W.
Qin
,
G.
Wang
,
J.
Sun
,
J.
Lin
,
R.
Kim
,
D.
Zhang
, and
K.
Zheng
,
J. Phys. D Appl. Phys.
41
,
235102
(
2008
).
36.
M.
Shiojiri
,
T.
Isshiki
,
H.
Saijo
,
Y.
Yabuuchi
, and
N.
Takahashi
,
J. Electron Microsc.
42
,
72
(
1993
).
37.
R. E.
Bell
and
R. E.
Herfert
,
J. Am. Chem. Soc.
79
,
3351
(
1957
).
38.
A.
Jain
 et al,
APL Mater.
1
,
011002
(
2013
).
39.
See: Materials Project dataset, “mp-20589: MoO3 (Orthorhombic, Pnma, 62),” https://materialsproject.org/materials/mp-20589/.
40.
R. K.
Mishra
,
M.
Krishnaih
,
S. Y.
Kim
,
A. K.
Kushwaha
, and
S. H.
Jin
,
Mater. Lett.
236
,
167
(
2019
).
41.
Z.
Zhou
,
Y.
Lin
,
P.
Zhang
,
E.
Ashalley
,
M.
Shafa
,
H.
Li
,
J.
Wu
, and
Z.
Wang
,
Mater. Lett.
131
,
122
(
2014
).
42.
C. G.
Ong
,
R. A.
Dahlgren
, and
K. K.
Tanji
,
Comput. Geosci.
18
,
517
(
1992
).
43.
See: Materials Project dataset, “mp-22862: NaCl (Cubic, Fm-3 m, 225),” https://materialsproject.org/materials/mp-22862/.
44.
See: Materials Project dataset, “mp-703305: Na2PHO4 (Monoclinic, P2_1/c, 14),” https://materialsproject.org/materials/mp-703305/.
45.
Z.
Ding
,
B. Q.
Dong
, and
F.
Xing
,
Appl. Mech. Mater.
174
,
802
(
2012
).
46.
T.
Miyata
and
T.
Masuko
,
Polymer
38
,
4003
(
1997
).
47.
N.
Cortés
,
L.
Rosales
,
P. A.
Orellana
,
A.
Ayuela
, and
J. W.
González
,
Sci. Rep.
8
,
2143
(
2018
).
48.
W. F.
Wu
,
F. P.
Wang
,
J. H.
Li
,
X. W.
Yang
,
X.
Xiao
, and
Y. X.
Pan
,
Geobiology
11
,
593
(
2013
).
49.
A. L.
Neal
,
K. M.
Rosso
,
G. G.
Geesey
,
Y. A.
Gorby
, and
B. J.
Little
,
Geochim. Cosmochim. Acta
67
,
4489
(
2003
).
50.
P.
Chellamuthu
,
K.
Naughton
,
S.
Pirbadian
,
K. P. T.
Silva
,
M. S.
Chavez
,
M. Y.
El-Naggar
, and
J.
Boedicker
,
Front. Microbiol.
10
,
938
(
2019
).
51.
P.
Chellamuthu
,
F.
Tran
,
K. P. T.
Silva
,
M. S.
Chavez
,
M. Y.
El-Naggar
, and
J. Q.
Boedicker
,
Microb. Biotechnol.
12
,
161
(
2019
).
52.
S. M.
Tiquia-Arashiro
and
D. F.
Rodrigues
,
Extremophiles Applications in Nanotechnology
(
Springer
,
Cham
,
2016
).
53.
See supplementary material at https://doi.org/10.1116/6.0000199 for an image of batch cultures during cultivation, SEM images depicting the areas where EDS analysis was performed, and corresponding EDS spectra.

Supplementary Material

You do not currently have access to this content.