The controlled modification of surface properties represents a pervasive requirement to be fulfilled when developing new technologies. In this paper, we propose an easy-to-implement protocol for the functionalization of glass with self-assembled monolayers (SAMs). The adaptivity of the synthesis route was demonstrated by the controlled anchoring of thiol, amino, glycidyloxy, and methacrylate groups onto the glass surface. The optimization of the synthetic pathway was mirrored by extremely smooth SAMs (approximately 150 pm roughness), layer thickness comparable to the theoretical molecule length, absence of silane islands along the surface, quasi-unitary degree of packing, and tailored wettability and charge. The functionalization kinetics of two model silanes, 3-mercapto- and 3-amino-propyltrimethoxysilane, was determined by cross-comparing x-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry data. Our SAMs with tailored physicochemical attributes will be implemented as supports for the crystallization of pharmaceuticals and biomolecules in upcoming studies. Here, the application to a small molecule drug model, namely aspirin, was discussed as a proof of concept.

1.
G. M.
Whitesides
and
B.
Grzybowski
,
Science
295
,
2418
(
2002
).
2.
L.
Passoni
,
L.
Criante
,
F.
Fumagalli
,
F.
Scotognella
,
G.
Lanzani
, and
F.
Di Fonzo
,
ACS Nano
8
,
12167
(
2014
).
3.
T.
Wink
,
S. J.
Van Zuilen
,
A.
Bult
, and
W. P.
Van Bennekom
,
Analyst
122
,
43
(
1997
).
4.
V.
Spampinato
,
M. A.
Parracino
,
R.
La Spina
,
F.
Rossi
, and
G.
Ceccone
,
Front. Chem.
4
, 8 (
2016
).
5.
F.
Artusio
and
R.
Pisano
,
Int. J. Pharm.
547
,
190
(
2018
).
6.
D.
Ji
 et al,
J. Cryst. Growth
218
,
390
(
2000
).
7.
P.
Marmont
,
N.
Battaglini
,
P.
Lang
,
G.
Horowitz
,
J.
Hwang
,
A.
Kahn
,
C.
Amato
, and
P.
Calas
,
Org. Electron.
9
,
419
(
2008
).
8.
D.
Liu
and
Q.
Miao
,
Mater. Chem. Front.
2
,
11
(
2018
).
9.
Z.
Yan
,
Z.
Sun
,
W.
Lu
,
J.
Yao
,
Y.
Zhu
, and
J. M.
Tour
,
ACS Nano
5
,
1535
(
2011
).
10.
J.
Osicka
,
M.
Ilčiková
,
A.
Popelka
,
J.
Filip
,
T.
Bertok
,
J.
Tkac
, and
P.
Kasak
,
Langmuir
32
,
5491
(
2016
).
11.
12.
C.
Rodriguez
,
A. M.
Noval
,
V.
Torres-Costa
,
G.
Ceccone
, and
M. Manso
Silván
,
Materials
12
,
131
(
2019
).
13.
V.
Chechik
,
R. M.
Crooks
, and
C. J. M.
Stirling
,
Adv. Mater.
12
,
1161
(
2000
).
14.
W.
Senaratne
,
L.
Andruzzi
, and
C. K.
Ober
,
Biomacromolecules
6
,
2427
(
2005
).
15.
E.
Ruckenstein
and
Z. F.
Li
,
Adv. Colloid Interface Sci.
113
,
43
(
2005
).
16.
F.
Artusio
,
M.
Bazzano
,
R.
Pisano
,
P. E.
Coulon
,
G.
Rizza
,
T.
Schiller
, and
M.
Sangermano
,
Polymer
139
,
155
(
2018
).
17.
F.
Artusio
,
A.
Ferri
,
V.
Gigante
,
D.
Massella
,
I.
Mazzarino
,
M.
Sangermano
,
A.
Barresi
, and
R.
Pisano
,
Drug Dev. Ind. Pharm.
45
,
1862
(
2019
).
18.
M.
Beiner
,
G. T.
Rengarajan
,
S.
Pankaj
,
D.
Enke
, and
M.
Steinhart
,
Nano Lett.
7
,
1381
(
2007
).
19.
E. N.
Athanasopoulou
,
N.
Nianias
,
Q. K.
Ong
, and
F.
Stellacci
,
Nanoscale
10
,
23027
(
2018
).
20.
J.
Fick
,
R.
Steitz
,
V.
Leiner
,
S.
Tokumitsu
,
M.
Himmelhaus
, and
M.
Grunze
,
Langmuir
20
,
3848
(
2004
).
21.
B. C.
Dallin
,
H.
Yeon
,
A. R.
Ostwalt
,
N. L.
Abbott
, and
R. C.
Van Lehn
,
Langmuir
35
,
2078
(
2019
).
22.
A. K.
Chew
and
R. C.
Van Lehn
,
J. Phys. Chem. C
122
,
26288
(
2018
).
23.
E.
Finocchio
,
E.
Macis
,
R.
Raiteri
, and
G.
Busca
,
Langmuir
23
,
2505
(
2007
).
24.
E.
Pavlovic
,
A. P.
Quist
,
U.
Gelius
, and
S.
Oscarsson
,
J. Colloid Interface Sci.
254
,
200
(
2002
).
25.
P.
Pallavicini
,
G.
Dacarro
,
M.
Galli
, and
M.
Patrini
,
J. Colloid Interface Sci.
332
,
432
(
2009
).
26.
N. R.
Glass
,
R.
Tjeung
,
P.
Chan
,
L. Y.
Yeo
, and
J. R.
Friend
,
Biomicrofluidics
5
,
036501
(
2011
).
27.
Y.
Yang
,
A. M.
Bittner
,
S.
Baldelli
, and
K.
Kern
,
Thin Solid Films
516
,
3948
(
2008
).
28.
G. A.
Husseini
,
J.
Peacock
,
A.
Sathyapalan
,
L. W.
Zilch
,
M. C.
Asplund
,
E. T.
Sevy
, and
M. R.
Linford
,
Langmuir
19
,
5169
(
2003
).
30.
B. C.
Bunker
,
R. W.
Carpick
,
R. A.
Assink
,
M. L.
Thomas
,
M. G.
Hankins
,
J. A.
Voigt
,
D.
Sipola
,
M. P.
De Boer
, and
G. L.
Gulley
,
Langmuir
16
,
7742
(
2000
).
31.
K. T.
Tan
,
C. C.
White
,
D. L.
Hunston
,
C.
Clerici
,
K. L.
Steffens
,
J.
Goldman
, and
B. D.
Vogt
,
J. Adhes.
84
,
339
(
2008
).
32.
M.
Hu
,
S.
Noda
,
T.
Okubo
,
Y.
Yamaguchi
, and
H.
Komiyama
,
Appl. Surf. Sci
181
,
307
(
2001
).
33.
R.
La Spina
,
V.
Spampinato
,
D.
Gilliland
,
I.
Ojea-Jimenez
, and
G.
Ceccone
,
Biointerphases
12
,
031003
(
2017
).
34.
J. W.
Park
and
J. S.
Shumaker-Parry
,
ACS Nano
9
,
1665
(
2015
).
35.
B.
Oberleitner
,
A.
Dellinger
,
M.
Déforet
,
A.
Galtayries
,
A. S.
Castanet
, and
V.
Semetey
,
Chem. Commun.
49
,
1615
(
2013
).
36.
D.
Samanta
and
A.
Sarkar
,
Chem. Soc. Rev.
40
,
2567
(
2011
).
37.
A.
Taglietti
,
G.
Dacarro
,
D.
Barbieri
,
L.
Cucca
,
P.
Grisoli
,
M.
Patrini
,
C. R.
Arciola
, and
P.
Pallavicini
,
Materials
12
,
2761
(
2019
).
38.
C.
Haensch
,
S.
Hoeppener
, and
U. S.
Schubert
,
Chem. Soc. Rev.
39
,
2323
(
2010
).
39.
S.
Casalini
,
C. A.
Bortolotti
,
F.
Leonardi
, and
F.
Biscarini
,
Chem. Soc. Rev.
46
,
40
(
2017
).
40.
G. C.
Allen
,
F.
Sorbello
,
C.
Altavilla
,
A.
Castorina
, and
E.
Ciliberto
,
Thin Solid Films
483
,
306
(
2005
).
41.
P. M.
Dietrich
,
C.
Streeck
,
S.
Glamsch
,
C.
Ehlert
,
A.
Lippitz
,
A.
Nutsch
,
N.
Kulak
,
B.
Beckhoff
, and
W. E. S.
Unger
,
Anal. Chem.
87
,
10117
(
2015
).
42.
C. R.
Kessel
and
S.
Granick
,
Langmuir
7
,
532
(
1991
).
43.
C. T.
Buscher
,
D.
McBranch
, and
D. Q.
Li
,
J. Am. Chem. Soc.
118
,
2950
(
1996
).
44.
M.
Wang
,
K. M.
Liechti
,
Q.
Wang
, and
J. M.
White
,
Langmuir
21
,
1848
(
2005
).
45.
C. H.
Kuo
,
H. Y.
Chang
,
C. P.
Liu
,
S. H.
Lee
,
Y. W.
You
, and
J. J.
Shyue
,
Phys. Chem. Chem. Phys.
13
,
3649
(
2011
).
46.
H. G.
Tompkins
and
W. A.
McGahan
,
Spectroscopic Ellipsometry and Reflectometry: A User’s Guide
(
John Wiley & Sons, Inc
,
New York
,
1999
).
48.
S.
Tougaard
and
F.
Yubero
,
Surf. Interface Anal.
36
,
824
(
2004
).
49.
B. J.
Tyler
,
G.
Rayal
, and
D. G.
Castner
,
Biomaterials
28
,
2412
(
2007
).
50.
D. J.
Graham
and
D. G.
Castner
,
Biointerphases
7
,
49
(
2012
).
51.
G. F.
Trindade
,
M. L.
Abel
, and
J. F.
Watts
,
Chemom. Intell. Lab. Syst.
163
,
76
(
2017
).
52.
G. F.
Trindade
,
M. L.
Abel
, and
J. F.
Watts
,
Chemom. Intell. Lab. Syst.
182
,
180
(
2018
).
53.
A.
Henderson
,
TOF-SIMS: Materials Analysis by Mass Spectrometry
(
Surface Spectra
,
2013
), pp.
449
484.
54.
J.
Shlens
, see http://arxiv.org/abs/1404.1100 for a tutorial on principal component analysis (
2014
).
55.
G.
Beamson
and
D.
Briggs
,
XPS of Polymers Database
(
Surface Spectra
,
1992
).
56.
S.
Onclin
,
B. J.
Ravoo
, and
D. N.
Reinhoudt
,
Angew. Chem., Int. Ed.
44
,
6282
(
2005
).
57.
N.
Herzer
,
S.
Hoeppener
, and
U. S.
Schubert
,
Chem. Commun.
46
,
5634
(
2010
).
58.
M. J. P.
Roldán
,
C. P.
García
,
G.
Marchesini
,
D.
Gilliland
,
G.
Ceccone
,
D.
Mehn
,
P.
Colpo
, and
F.
Rossi
,
Microelectron. Eng.
88
,
1948
(
2011
).
59.
F.
Schreiber
,
Prog. Surf. Sci.
65
,
151
(
2000
).
60.
M.
Dhayal
and
D. M.
Ratner
,
Langmuir
25
,
2181
(
2009
).
61.
F.
Cheng
,
L. J.
Gamble
, and
D. G.
Castner
,
Anal. Chem.
80
,
2564
(
2008
).
62.
C. D.
Bain
and
G. M.
Whitesides
,
J. Phys. Chem.
93
,
1670
(
1989
).
63.
P. J.
Cumpson
and
P. C.
Zalm
,
Surf. Interface Anal.
29
,
403
(
2000
).
64.
C. J.
Powell
and
A.
Jablonski
,
J. Surf. Anal.
9
,
322
(
2002
).
65.
M.
Ben Ali
,
F.
Bessueille
,
J. M.
Chovelon
,
A.
Abdelghani
,
N.
Jaffrezic-Renault
,
M. A.
Maaref
, and
C.
Martelet
,
Mater. Sci. Eng. C
28
,
628
(
2008
).
66.
N. H.
Nordin
and
Z.
Ahmad
,
J. Phys. Sci.
26
,
11
(
2015
).
67.
D. F. S.
Petri
,
G.
Wenz
,
P.
Schunk
, and
T.
Schimmel
,
Langmuir
15
,
4520
(
1999
).
68.
H.
Zhang
,
H. X.
He
,
J.
Wang
,
T.
Mu
, and
Z. F.
Liu
,
Appl. Phys. A Mater. Sci. Process.
66
,
269
(
1998
).
69.
See supplementary material at http://dx.doi.org/10.1116/6.0000250 for further details on AFM and FT-IR characterizations, XPS quantification, and ToF-SIMS spectra.

Supplementary Material

You do not currently have access to this content.