In recent decades, single particle tracking (SPT) has been developed into a sophisticated analytical approach involving complex instruments and data analysis schemes to extract information from time-resolved particle trajectories. Very often, mobility-related properties are extracted from these particle trajectories, as they often contain information about local interactions experienced by the particles while moving through the sample. This tutorial aims to provide a comprehensive overview about the accuracies that can be achieved when extracting mobility-related properties from 2D particle trajectories and how these accuracies depend on experimental parameters. Proper interpretation of SPT data requires an assessment of whether the obtained accuracies are sufficient to resolve the effect under investigation. This is demonstrated by calculating mean square displacement curves that show an apparent super- or subdiffusive behavior due to poor measurement statistics instead of the presence of true anomalous diffusion. Furthermore, the refinement of parameters involved in the design or analysis of SPT experiments is discussed and an approach is proposed in which square displacement distributions are inspected to evaluate the quality of SPT data and to extract information about the maximum distance over which particles should be tracked during the linking process.

2.
A.
Yildiz
,
J. N.
Forkey
,
S. A.
McKinney
,
T.
Ha
,
Y. E.
Goldman
, and
P. R.
Selvin
,
Science
300
,
2061
(
2003
).
3.
P. J.
Keller
,
A. D.
Schmidt
,
J.
Wittbrodt
, and
E. H. K.
Stelzer
,
Science
322
,
1065
(
2008
).
4.
T.
Klein
,
S.
Proppert
, and
M.
Sauer
,
Histochem. Cell Biol.
141
,
561
(
2014
).
6.
H. M.
Wu
,
Y. H.
Lin
,
T. C.
Yen
, and
C. L.
Hsieh
,
Sci. Rep.
6
,
20542
(
2016
).
7.
L.
Schermelleh
,
A.
Ferrand
,
T.
Huser
,
C.
Eggeling
,
M.
Sauer
,
O.
Biehlmaier
, and
G. P. C.
Drummen
,
Nat. Cell Biol.
21
,
72
(
2019
).
8.
S.
Even-Ram
and
K. M.
Yamada
,
Curr. Opin. Cell Biol.
17
,
524
(
2005
).
9.
N.
Chenouard
et al,
Nat. Methods
11
,
281
(
2014
).
10.
M. J.
Saxton
and
K.
Jacobson
,
Annu. Rev. Biophys. Biomol.
26
,
373
(
1997
).
11.
N.
Ruthardt
,
D. C.
Lamb
, and
C.
Bräuchle
,
Mol. Ther.
19
,
1199
(
2011
).
12.
C.
Manzo
and
M. F.
Garcia-Parajo
,
Rep. Prog. Phys.
78
,
124601
(
2015
).
13.
H.
Shen
,
L. J.
Tauzin
,
R.
Baiyasi
,
W.
Wang
,
N.
Moringo
,
B.
Shuang
, and
C. F.
Landes
,
Chem. Rev.
117
,
7331
(
2017
).
14.
A.
Small
and
S.
Stahlheber
,
Nat. Methods
11
,
267
(
2014
).
15.
K. M.
Spillane
,
J.
Ortega-Arroyo
,
G.
de Wit
,
C.
Eggeling
,
H.
Ewers
,
M. I.
Wallace
, and
P.
Kukura
,
Nano Lett.
14
,
5390
(
2014
).
16.
G. J.
Schütz
,
H.
Schindler
, and
T.
Schmidt
,
Biophys. J.
73
,
1073
(
1997
).
17.
C.
Dietrich
,
B.
Yang
,
T.
Fujiwara
,
A.
Kusumi
, and
K.
Jacobson
,
Biophys. J.
82
,
274
(
2002
).
18.
M. J.
Pittet
and
R.
Weissleder
,
Cell
147
,
983
(
2011
).
19.
A.
Gahlmann
and
W. E.
Moerner
,
Nat. Rev. Microbiol.
12
,
9
(
2014
).
20.
L.
Cognet
,
C.
Leduc
, and
B.
Lounis
,
Curr. Opin. Chem. Biol.
20
,
78
(
2014
).
21.
M.
Weber
and
J.
Huisken
,
Curr. Opin. Genet. Dev.
21
,
566
(
2011
).
22.
R. W.
Taylor
,
R. G.
Mahmoodabadi
,
V.
Rauschenberger
,
A.
Giessl
,
A.
Schambony
, and
V.
Sandoghdar
,
Nat. Photonics
13
,
480
(
2019
).
23.
J. D.
Knight
,
M. G.
Lerner
,
J. G.
Marcano-Velázquez
,
R. W.
Pastor
, and
J. J.
Falke
,
Biophys. J.
99
,
2879
(
2010
).
24.
D. W.
Lee
,
H. L.
Hsu
,
K. B.
Bacon
, and
S.
Daniel
,
PLoS One
11
,
e0163437
(
2016
).
25.
M.
Bally
,
A.
Gunnarsson
,
L.
Svensson
,
G.
Larson
,
V. P.
Zhdanov
, and
F.
Höök
,
Phys. Rev. Lett.
107
,
188103
(
2011
).
26.
M.
Müller
,
D.
Lauster
,
H. H. K.
Wildenauer
,
A.
Herrmann
, and
S.
Block
,
Nano Lett.
19
,
1875
(
2019
).
27.
P.
Kukura
,
H.
Ewers
,
C.
Müller
,
A.
Renn
,
A.
Helenius
, and
V.
Sandoghdar
,
Nat. Methods
6
,
923
(
2009
).
28.
K.
de Bruin
,
N.
Ruthardt
,
K.
von Gersdorff
,
R.
Bausinger
,
E.
Wagner
,
M.
Ogris
, and
C.
Bräuchle
,
Mol. Ther.
15
,
1297
(
2007
).
29.
E.
Meijering
,
O.
Dzyubachyk
, and
I.
Smal
,
Methods Enzymol.
504
,
183
(
2012
).
30.
M. S.
Robbins
and
B. J.
Hadwen
,
IEEE Trans. Electron. Devices
50
,
1227
(
2003
).
31.
F.
Long
,
S. Q.
Zeng
, and
Z. L.
Huang
,
Opt. Express
20
,
17741
(
2012
).
32.
M. J.
Lang
,
P. M.
Fordyce
,
A. M.
Engh
,
K. C.
Neuman
, and
S. M.
Block
,
Nat. Methods
1
,
133
(
2004
).
35.
J.
Ortega-Arroyo
and
P.
Kukura
,
Phys. Chem. Chem. Phys.
14
,
15625
(
2012
).
36.
A.
Lundgren
,
B. J.
Fast
,
S.
Block
,
B.
Agnarsson
,
E.
Reimhult
,
A.
Gunnarsson
, and
F.
Höök
,
Nano Lett.
18
,
381
(
2018
).
37.
S.
Faez
,
Y.
Lahini
,
S.
Weidlich
,
R. F.
Garmann
,
K.
Wondraczek
,
M.
Zeisberger
,
M. A.
Schmidt
,
M.
Orrit
, and
V. N.
Manoharan
,
ACS Nano
9
,
12349
(
2015
).
38.
H. M.
Wu
,
Y. H.
Lin
,
T. C.
Yen
, and
C. L.
Hsieh
,
Sci. Rep.
6
,
20542
(
2016
).
39.
G.
de Wit
,
J. S. H.
Danial
,
P.
Kukura
, and
M. I.
Wallace
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
12299
(
2015
).
40.
B.
Zhang
,
J.
Zerubia
, and
J. C.
Olivo-Marin
,
Appl. Opt.
46
,
1819
(
2007
).
41.
F.
Gottfert
,
C. A.
Wurm
,
V.
Mueller
,
S.
Berning
,
V. C.
Cordes
,
A.
Honigmann
, and
S. W.
Hell
,
Biophys. J.
105
,
L01
(
2013
).
42.
D.
Sage
,
H.
Kirshner
,
T.
Pengo
,
N.
Stuurman
,
J.
Min
,
S.
Manley
, and
M.
Unser
,
Nat. Methods
12
,
717
(
2015
).
43.
R. E.
Thompson
,
D. R.
Larson
, and
W. W.
Webb
,
Biophys. J.
82
,
2775
(
2002
).
44.
45.
K. J. A.
Martens
,
A. N.
Bader
,
S.
Baas
,
B.
Rieger
, and
J.
Hohlbein
,
J. Chem. Phys.
148
,
123311
(
2018
).
46.
M. K.
Cheezum
,
W. F.
Walker
, and
W. H.
Guilford
,
Biophys. J.
81
,
2378
(
2001
).
47.
B.
Rieger
and
S.
Stallinga
,
Chemphyschem
15
,
664
(
2014
).
48.
M.
Lindén
,
V.
Ćurić
,
E.
Amselem
, and
J.
Elf
,
Nat. Commun.
8
,
15115
(
2017
).
49.
C. S.
Smith
,
N.
Joseph
,
B.
Rieger
, and
K. A.
Lidke
,
Nat. Methods
7
,
373
(
2010
).
50.
S.
Block
,
B. J.
Fast
,
A.
Lundgren
,
V. P.
Zhdanov
, and
F.
Höök
,
Nat. Commun.
7
,
12956
(
2016
).
51.
R. W.
Taylor
and
V.
Sandoghdar
,
Nano Lett.
19
,
4827
(
2019
).
52.
S.
Wieser
and
G. J.
Schütz
,
Methods
46
,
131
(
2008
).
53.
A.
Sergé
,
N.
Bertaux
,
H.
Rigneault
, and
D.
Marguet
,
Nat. Methods
5
,
687
(
2008
).
54.
R.
Friedrich
,
S.
Block
,
M.
Alizadehheidari
,
S.
Heider
,
J.
Fritzsche
,
E. K.
Esbjörner
,
F.
Westerlund
, and
M.
Bally
,
Lab Chip
17
,
830
(
2017
).
55.
R.
Metzler
,
J. H.
Jeon
, and
A. G.
Cherstvy
,
Biochim Biophys Acta Biomembr
1858
,
2451
(
2016
).
56.
J. B.
Beltman
,
A. F. M.
Marée
, and
R. J.
de Boer
,
Nat. Rev. Immunol.
9
,
789
(
2009
).
57.
H.
Qian
,
M. P.
Sheetz
, and
E. L.
Elson
,
Biophys. J.
60
,
910
(
1991
).
59.
A. G.
Cherstvy
and
R.
Metzler
,
Phys. Chem. Chem. Phys.
15
,
20220
(
2013
).
60.
S.
Chandrasekhar
,
Rev. Mod. Phys.
15,
1
(
1943
).
61.
62.
X.
Michalet
and
A. J.
Berglund
,
Phys. Rev. E
85
,
061916
(
2012
).
63.
D. S.
Martin
,
M. B.
Forstner
, and
J. A.
Käs
,
Biophys. J.
83
,
2109
(
2002
).
64.
L.
Weimann
,
K. A.
Ganzinger
,
J.
McColl
,
K. L.
Irvine
,
S. J.
Davis
,
N. J.
Gay
,
C. E.
Bryant
, and
D.
Klenerman
,
PLoS One
8
,
e64287
(
2013
).
65.
N.
Monnier
,
S. M.
Guo
,
M.
Mori
,
J.
He
,
P.
Lénárt
, and
M.
Bathe
,
Biophys. J.
103
,
616
(
2012
).
66.
P. J.
Slator
and
N. J.
Burroughs
,
Biophys. J.
115
,
1741
(
2018
).
67.
F.
Persson
,
M.
Lindén
,
C.
Unoson
, and
J.
Elf
,
Nat. Methods
10
,
265
(
2013
).
68.
A. J.
Berglund
,
Phys. Rev. E
82
,
011917
(
2010
).
69.
S.
Block
,
V. P.
Zhdanov
, and
F.
Höök
,
Nano Lett.
16
,
4382
(
2016
).
70.
P. G.
Saffman
and
M.
Delbrück
,
Proc. Natl. Acad. Sci. U.S.A.
72
,
3111
(
1975
).
71.
E.
Evans
and
E.
Sackmann
,
J. Fluid Mech.
194
,
553
(
1988
).
72.
H. A.
Stone
and
A.
Ajdari
,
J. Fluid Mech.
369
,
151
(
1998
).
74.
D.
Montiel
,
H.
Cang
, and
H.
Yang
,
J. Phys. Chem. B
110
,
19763
(
2006
).
75.
S.
Wieser
,
M.
Axmann
, and
G. J.
Schütz
,
Biophys. J.
95
,
5988
(
2008
).
76.
C.
Yoshina-Ishii
and
S. G.
Boxer
,
Langmuir
22
,
2384
(
2006
).
77.
S. R.
Tabaei
,
J. J. J.
Gillissen
,
S.
Block
,
F.
Höök
, and
N. J.
Cho
,
ACS Nano
10
,
8812
(
2016
).
78.
H.
Li
,
B.
Au
,
J.
Rentsch
,
S.
Block
, and
H.
Ewers
,
Biophys J.
118
,
313a
(
2020
).
79.
80.
A.
Gunnarsson
,
P.
Jönsson
,
V. P.
Zhdanov
, and
F.
Höök
,
Nucleic Acids Res.
37
,
e99
(
2009
).
81.
A.
Gunnarsson
,
L.
Dexlin
,
P.
Wallin
,
S.
Svedhem
,
P.
Jönsson
,
C.
Wingren
, and
F.
Höök
,
J. Am. Chem. Soc.
133
,
14852
(
2011
).
82.
O.
Wahlsten
,
A.
Gunnarsson
,
L. S.
Nyström
,
H.
Pace
,
S.
Geschwindner
, and
F.
Höök
,
Langmuir
31
,
10774
(
2015
).
83.
A.
Kunze
,
M.
Bally
,
F.
Höök
, and
G.
Larson
,
Sci. Rep.
3
,
1452
(
2013
).
84.
A.
Guzman
,
M.
Zelman-Femiak
,
J. H.
Boergermann
,
S.
Paschkowsky
,
P. A.
Kreuzaler
,
P.
Fratzl
,
G. S.
Harms
, and
P.
Knaus
,
J. Biol. Chem.
287
,
39492
(
2012
).
85.
J.
Schindelin
,
I.
Arganda-Carreras
,
E.
Frise
,
V.
Kaynig
,
M.
Longair
,
T.
Pietzsch
,
S.
Preibisch
,
C.
Rueden
,
S.
Saalfeld
,
B.
Schmid
,
J.
Tinevez
,
D.
White
,
V.
Hartenstein
,
K.
Eliceiri
,
P.
Tomancak
, and
A.
Cardona
,
Nat Methods
9
,
676
(
2012
).
86.
N.
Perry
,
J. Y.
Tinevez
,
J.
Schindelin
,
G. M.
Hoopes
,
G. D.
Reynolds
,
E.
Laplantine
,
S. Y.
Bednarek
,
S. L.
Shorte
, and
K. W.
Eliceiri
,
Methods
115
,
80
(
2017
).
87.
K.
Jaqaman
and
G.
Danuser
,
Cold Spring Harb. Protoc.
2009
,
pdb top65
(
2009
).
You do not currently have access to this content.