An electrochemical quartz crystal microbalance is described, which achieves a time resolution down to 100 μs. Accumulation and averaging over a few hours bring the noise down to about 30 mHz. The application examples are pH-driven viscosity changes in albumin solutions. The pH was switched with the electrode potential. The characteristic response time is in the millisecond range. The focus is on experimental aspects as well as advantages and limitations of the technique.

1.
L.
Daikhin
,
V.
Tsionsky
,
E.
Gileadi
, and
M.
Urbakh
, “
Looking at the metal/solution interface with the electrochemical quartz crystal microbalance theory and experiment
,” in
Electroanalytical Chemistry: A Series of Advances
, edited by
A. J.
Bard
and
I.
Rubinstein
(
Marcel Dekker Inc.
,
New York, Basel
,
2003
), pp.
1
99
.
2.
S.
Bruckenstein
and
M.
Shay
,
Electrochim. Acta
30
,
1295
(
1985
).
3.
G.
Sauerbrey
,
Z. Phys.
155
,
206
(
1959
).
4.
V.
Tsionsky
,
L.
Daikhin
,
G.
Zilberman
, and
E.
Gileadi
,
Faraday Discuss.
107
,
337
(
1997
).
5.
W. W.
Lee
,
H. S.
White
, and
M. D.
Ward
,
Anal. Chem.
65
,
3232
(
1993
).
6.
K. K.
Kanazawa
and
J. G.
Gordon
,
Anal. Chem.
57
,
1770
(
1985
).
7.
A. P.
Borovikov
,
Instrum. Exp. Tech.
19
,
223
(
1976
).
8.
E.
Gileadi
,
Physical Electrochemistry Fundamentals, Techniques and Applications
(
Wiley-VCH
,
Weinheim
,
2011
).
9.
F.
Wudy
,
M.
Multerer
,
C.
Stock
,
G.
Schmeer
, and
H. J.
Gores
,
Electrochim. Acta
53
,
6568
(
2008
).
10.
C.
Hutter
,
D.
Platz
,
E. A.
Tholen
,
T. H.
Hansson
, and
D. B.
Haviland
,
Phys. Rev. Lett.
104
,
050801
(
2010
).
11.
C.
Gabrielli
,
M.
Keddam
,
F.
Minouflet
, and
H.
Perrot
,
Electrochim. Acta
41
,
1217
(
1996
).
12.
J.
Agrisuelas
,
C.
Gabrielli
,
J. J.
Garcia-Jareno
,
H.
Perrot
,
O.
Sel
, and
F.
Vicente
,
Electrochim. Acta
176
,
1454
(
2015
).
13.
M.
Pax
,
J.
Rieger
,
R. H.
Eibl
,
C.
Thielemann
, and
D.
Johannsmann
,
Analyst
130
,
1474
(
2005
).
15.
J.
Petri
,
S.
Hochstadt
,
T.
Nentwig
,
A.
Pausch
,
A.
Langhoff
, and
D.
Johannsmann
,
Electroanalysis
29
,
806
(
2017
).
16.
M.
Rodahl
,
F.
Hook
,
C.
Fredriksson
,
C. A.
Keller
,
A.
Krozer
,
P.
Brzezinski
,
M.
Voinova
, and
B.
Kasemo
,
Faraday Discuss.
107
,
229
(
1997
).
17.
J. H.
Park
,
T. N.
Sut
,
J. A.
Jackman
,
A. R.
Ferhan
,
B. K.
Yoon
, and
N. J.
Cho
,
Phys. Chem. Chem. Phys.
19
,
8854
(
2017
).
18.
J.
Jezek
,
M.
Rides
,
B.
Derham
,
J.
Moore
,
E.
Cerasoli
,
R.
Simler
, and
B.
Perez-Ramirez
,
Adv. Drug Delivery Rev.
63
,
1107
(
2011
).
19.
P.
Garidel
,
A. B.
Kuhn
,
L. V.
Schäfer
,
A. R.
Karow-Zwick
, and
M.
Blech
,
Eur. J. Pharm. Biopharm.
S0939-6411
,
30450
(
2017
).
20.
C. J.
Roberts
and
M. A.
Blanco
,
J. Phys. Chem. B
118
,
12599
(
2014
).
21.
C.
Lehermayr
,
H. C.
Mahler
,
K.
Mader
, and
S.
Fischer
,
J. Pharm. Sci.
100
,
2551
(
2011
).
22.
A.
Saluja
and
D. S.
Kalonia
,
J. Pharm. Sci.
94
,
1161
(
2005
).
23.
M.-T.
Schermeyer
,
H.
Sigloch
,
K. C.
Bauer
,
C.
Oelschlaeger
, and
J.
Hubbuch
,
Biotechnol. Bioeng.
113
,
576
(
2016
).
24.
J.
Hartl
,
A.
Peschel
,
D.
Johannsmann
, and
P.
Garidel
,
Phys. Chem. Chem. Phys.
19
,
32698
(
2017
).
25.
A. R.
Patel
,
B. A.
Kerwin
, and
S. R.
Kanapuram
,
J. Pharm. Sci.
98
,
3108
(
2009
).
26.
K.
Baler
,
R.
Michael
,
I.
Szleifer
, and
G. A.
Ameer
,
Biomacromolecules
15
,
3625
(
2014
).
27.
T.
Nicolai
,
Adv. Colloid Interface Sci.
270
,
147
(
2019
).
28.
K.
Sadman
,
Q. F.
Wang
,
S. H.
Chen
,
D. E.
Delgado
, and
K. R.
Shull
,
Langmuir
33
,
1834
(
2016
).
29.
E. J.
Martin
,
K.
Sadman
, and
K. R.
Shull
,
Langmuir
32
,
7747
(
2017
).
30.
D.
Johannsmann
,
The Quartz Crystal Microbalance in Soft Matter Research Fundamentals and Modeling
(
Springer
,
Heidelberg
,
2015
).
You do not currently have access to this content.