Polymer surface grafting is widely used in the field of bone regeneration to increase calcium phosphate (CaP) adhesion, with the intent of improving mechanical properties of CaP-polymer composite cements. Reinforcement can be achieved using multiple combined functional groups and/or complex surface geometries that, however, concurrently influence multiple effects such as wetting, roughness, and interfacial strengthening. This study focused on the influence of a chelating group, namely aspartic acid, on the adsorption of divalent ions such as Ba2+ or Ca2+ onto poly-l-lactic acid (PLA) films. The films were analyzed using contact angle measurements and X-ray photoelectron spectroscopy. The adsorption of CaP and its interfacial mechanical properties were investigated using functionalized PLA monofilaments whose surface roughness was analyzed using white light interferometry. Mechanical analysis was conducted by performing pull-out tests. The surfaces were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Using aspartic acid as a chelating group resulted in a 50 % increased adsorption of barium, an almost threefold increase in calcium coverage of the fiber compared to the control group and a twofold increase in interfacial stiffness. No significant increase in interfacial strength was determined, most likely due to the weakness of the CaP matrix, which was partially visible as residues on the monofilaments in the postfracture imaging. This study shows the potential of surfaces functionalized with aspartic acid as a simple alternative to complex polypeptide based functional groups for the adsorption of divalent ions such as calcium on poly-lactic acid in bone regenerating applications.

1.
N.
Döbelin
,
R.
Luginbühl
, and
M.
Bohner
,
Chimia
64
,
723
(
2010
).
2.
H. H. K.
Xu
,
F. C.
Eichmiller
, and
A. A.
Giuseppetti
,
J. Biomed. Mater. Res.
52
,
107
(
2000
).
3.
4.
F.
Libonati
,
A. K.
Nair
,
L.
Vergani
, and
M. J.
Buehler
,
Mech. Res. Commun.
58
,
17
(
2014
).
5.
Y.
You
,
B. M.
Min
,
S. J.
Lee
,
T. S.
Lee
, and
W. H.
Park
,
J. Appl. Polym. Sci.
95
,
193
(
2005
).
6.
I.
Engelberg
and
J.
Kohn
,
Biomaterials
12
,
292
(
1991
).
7.
Y.
Zuo
,
F.
Yang
,
J. G. C.
Wolke
,
Y.
Li
, and
J. A.
Jansen
,
Acta Biomater.
6
,
1238
(
2010
).
8.
A. A.
Leal
,
J. C.
Veeramachaneni
,
F. A.
Reifler
,
M.
Amberg
,
D.
Stapf
,
G. A.
Barandun
,
D.
Hegemann
, and
R.
Hufenus
,
Mater. Des.
93
,
334
(
2016
).
9.
N.
Graupner
,
K.
Albrecht
,
D.
Hegemann
, and
J.
Müssig
,
J. Appl. Polym. Sci.
128
,
4378
(
2013
).
10.
C.
Canal
,
S.
Gallinetti
, and
M. P.
Ginebra
,
Plasma Process. Polym.
11
,
694
(
2014
).
11.
S.
Maenz
,
M.
Hennig
,
M.
Mühlstädt
,
E.
Kunisch
,
M.
Bungartz
,
O.
Brinkmann
,
J.
Bossert
,
R. W.
Kinne
, and
K. D.
Jandt
,
J. Mech. Behav. Biomed. Mater.
57
,
347
(
2016
).
12.
D.
Rautaray
,
S.
Mandal
, and
M.
Sastry
,
Langmuir
21
,
5185
(
2005
).
13.
X. D.
Kong
,
F. Z.
Cui
,
X. M.
Wang
,
M.
Zhang
, and
W.
Zhang
,
J. Cryst. Growth
270
,
197
(
2004
).
14.
W. A.
Schroeder
,
L. M.
Kay
,
B.
Lewis
, and
N.
Munger
,
J. Am. Chem. Soc.
77
,
3908
(
1955
).
15.
J.
Ou
,
Y.
Jiang
, and
Z.
Zhang
,
Adv. Mater. Res.
343–344
,
882
(
2012
).
16.
A. G.
Guex
,
D.
Hegemann
,
M. N.
Giraud
,
H. T.
Tevaearai
,
A. M.
Popa
,
R. M.
Rossi
, and
G.
Fortunato
,
Colloids Surf. B
123
,
724
(
2014
).
17.
S.
Guimond
,
B.
Hanselmann
,
M.
Hossain
,
V.
Salimova
, and
D.
Hegemann
,
Plasma Processes Polym.
12
,
328
(
2015
).
18.
U.
Edlund
,
T.
Sauter
, and
A. C.
Albertsson
,
Polym. Adv. Technol.
22
,
2368
(
2011
).
19.
Y.
Zhan
and
G.
Meschke
,
paper presented at the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8
,
Toledo
,
Spain
,
10–14 March,
2013
(unpublished).
20.
L. F.
Friedrich
and
C.
Wang
,
Lat. Am. J. Solids Struct.
13
,
1937
(
2016
).
21.
E.
Körner
,
G.
Fortunato
, and
D.
Hegemann
,
Plasma Processes Polym.
6
,
119
(
2009
).
22.
B. A.
Proctor
,
Cem. Concr. Compos.
12
,
53
(
1990
).
23.
See supplementary material at https://doi.org/10.1116/1.5129989 for detailed XPS survey scans, stress- strain curves, sessile drop figures and statistical analysis.

Supplementary Material

You do not currently have access to this content.