Antimicrobial properties of solid copper (Cu) surfaces against various microorganisms have been demonstrated, but little is known about the durability and relative antimicrobial efficacy of different Cu formulations currently used in healthcare. The aim of this study was to assess whether three different formulations of copper-bearing alloys (integral, spray-on and Cu-impregnated surfaces) and a stainless steel control differed in their antimicrobial efficacy, durability, and compatibility with hospital-grade cleaner/disinfectants. The U.S. Environmental Protection Agency draft protocol for the evaluation of bactericidal activity of Cu containing alloys was modified to more accurately reflect cleaning methods in healthcare. The three different Cu alloys were evaluated using 25 × 25 × 3 mm disks subjected to one year of simulated cleaning and disinfection using the Wiperator™ with microfiber cloths presoaked in three common hospital disinfectants: accelerated hydrogen peroxide, quaternary ammonium, or sodium hypochlorite solutions. Bactericidal activity was evaluated using Staphylococcus aureus and Pseudomonas aeruginosa. While all Cu formulations exhibited some antimicrobial activity, integral and spray-on Cu alloys showed the greatest efficacy. Assessments of durability included documentation of changes in mass, morphological changes by scanning electron microscopy, chemical composition alteration by energy-dispersive x-ray spectroscopy, and surface roughness alteration using profilometry over one year of simulated use. The integral Cu alloy had the least mass loss (0.20% and 0.19%) and abrasion-corrosion rate (6.28 and 6.09 μm/yr) compared to stainless steel. The integral product also showed the highest durability. Exposure to disinfectants affected both the antimicrobial efficacy and durability of the various copper products.

1.
S.
Chyderiotis
,
C.
Legeay
,
D.
Verjat-Trannoy
,
F.
Le Gallou
,
P.
Astagneau
, and
D.
Lepelletier
,
Antimicrob. Resist. Infect. Control
4
,
1
(
2015
).
2.
Health Protection Scotland
, Literature review and practice recommendations: existing and emerging technologies used for decontamination of the healthcare environment- antimicrobial copper surfaces (2017), see: https://www.hps.scot.nhs/uk/resourcedocument.aspx?id=6123.
3.
S.
Chyderiotis
,
C.
Legeay
,
D.
Verjat-Trannoy
,
F.
Le Gallou
,
P.
Astagneau
, and
D.
Lepelletier
,
Clin. Microbiol. Infect.
24
,
11
(
2018
).
4.
H.
Palza
,
M.
Nuñez
,
R.
Bastías
, and
K.
Delgado
,
Int. J. Antimicrob. Agents.
51
,
912
(
2018
).
5.
M.
van de Lagemaat
,
A.
Grotenhuis
,
B.
van de Belt-Gritter
,
S.
Roest
,
T. J. A.
Loontjens
,
H. J.
Busscher
,
H. C.
van der Mei
, and
Y.
Ren
,
Acta Biomater.
59
,
139
(
2017
).
6.
M. P.
Muller
,
C.
MacDougall
, and
M.
Lim
,
J. Hosp. Infect.
92
,
7
(
2016
).
7.
United States Environmental Protection Agency
, Protocol for the evaluation of bactericidal activity of hard, non-porous copper containing surface products (2016), see: https://www.epa.gov/pesticide-registration/updated-draft-protocol-evaluation-bactericidal-activity-hard-non-porous.
8.
ASTM E2315 - 16
, American Society for Testing and Materials (ASTM), Standard Guide for Assessment of Antimicrobial Activity Using a Time-Kill Procedure (2016), see: https://www.astm.org/Standards/E2315.htm.
9.
S. A.
Sattar
,
Int. J. Infect. Dis.
45
,
285
(
2016
).
10.
ASTM Committee G-1 on Corrosion of Metals
, Standard practice for preparing, cleaning, and evaluating corrosion test specimens (2017), see: http://www.cosasco.com/documents/ASTM_G1_Standard_Practice.pdf.
11.
M.
Ojeil
,
C.
Jermann
,
J.
Holah
,
S. P.
Denyer
, and
J. Y.
Maillard
,
J. Hosp. Infect.
85
,
4
(
2013
).
12.
M.
Hans
,
S.
Mathews
,
F.
Mücklich
, and
M.
Solioz
,
Biointerphases
11
,
018902
(
2016
).
13.
Public Health Ontario
,
Provincial Infectious Diseases Advisory, Best Practices for Environmental Cleaning for Prevention and Control of Infections in All Health Care Settings
, 3rd ed. (
PHO
,
Ontario
,
2018
)
14.
Canadian Agency for Drugs and Technologies in Health
,
Issues Emerg. Health Technol.
133
,
2
(
2015
).
15.
J. J.
Harrison
,
R. J.
Turner
,
D. A.
Joo
,
M. A.
Stan
,
C. S.
Chan
,
N. D.
Allan
,
H. A.
Vrionis
,
M. E.
Olson
, and
H.
Ceri
,
Antimicrob. Agents Chemother.
52
,
8
(
2008
).
16.
T. J.
Meyer
,
J.
Ramlall
,
P.
Thu
, and
N.
Gadura
,
Int. J. Biol. Pharm. Allied Sci.
9
,
3
(
2015
).
17.
S. L.
Warnes
,
V.
Caves
, and
C. W.
Keevil
,
Environ. Microbiol.
14
,
7
(
2012
).
18.
M.
Hans
 et al,
Langmuir
29
,
52
(
2013
).
19.
O.
Melter
and
B.
Radojevič
,
Folia Microbiol.
55
,
6
(
2010
).
20.
R. A.
Proctor
,
C.
von Eiff
,
B. C.
Kahl
,
K.
Becker
,
P.
McNamara
,
M.
Herrmann
, and
G.
Peters
,
Nat. Rev. Microbiol.
4
,
295
(
2006
).
21.
E.
Bryce
and
R.
Dixon
, “
Deploying innovative self-disinfecting copper surfaces (DISCS) Vancouver General Hospital (VGH), Canada
,” in
Copper Alloys 2018, Scientific Conference on Copper Materials
,
Milan, Italy
,
11–12 April 2018
(unpublished).
22.
J.
Chai
,
T.
Donnelly
,
T.
Wong
, and
E.
Bryce
,
Can. J. Infect. Dis. Med. Microbiol.
33
,
138
(
2018
).
You do not currently have access to this content.