Many studies have shown that urokinase plasminogen activator (uPA) is causally involved in promoting cancer invasion and metastasis. Thus, monitoring uPA levels could be very useful in cancer diagnosis, identification of initial metastasis, and guiding cancer treatment. Here, the authors developed a novel and scalable uPA sensor based on a graphene-gold nanoparticle platform that uses fluorescence of quantum dots to rapidly (<1 h) detect uPA up to 100 pM. Indeed, the authors’ sensor is highly selective and showed an ability to sense up to 100 pM uPA even in the presence of complex biological milieu such as the fetal bovine serum.

1.
N.
Mahmood
,
C.
Mihalcioiu
, and
S. A.
Rabbani
,
Front. Oncol.
8
,
24
(
2018
).
2.
P.
Mehlen
and
A.
Puisieux
,
Nat. Rev. Cancer
6
,
449
(
2006
).
3.
B.
Weigelt
,
J. L.
Peterse
, and
L. J.
van’t Veer
,
Nat. Rev. Cancer
5
,
591
(
2005
).
4.
M. J.
Duffy
and
C.
Duggan
,
Clin. Biochem.
37
,
541
(
2004
).
5.
M. J.
Duffy
,
Clin. Chem.
48
,
1194
(
2002
).
6.
S. J.
Shin
,
K. O.
Kim
,
M. K.
Kim
,
K. H.
Lee
,
M. S.
Hyun
,
K. J.
Kim
,
J. H.
Choi
, and
H. S.
Song
,
Jpn. J. Clin. Oncol.
35
,
342
(
2005
).
7.
H.
Taubert
 et al,
Br. J. Cancer
102
,
731
(
2010
).
8.
H.
Pappot
,
A. N.
Pedersen
,
N.
Brunner
, and
I. J.
Christensen
,
Lung Cancer
51
,
193
(
2006
).
9.
E. M.
Bekes
,
E. I.
Deryugina
,
T. A.
Kupriyanova
,
E.
Zajac
,
K. A.
Botkjaer
,
P. A.
Andreasen
, and
J. P.
Quigley
,
Neoplasia
13
,
806
(
2011
).
10.
WHO News Room/Fact Sheets/Detail/Cancer (2018), see https://www.who.int/news-room/fact-sheets/detail/cancer.
11.
Y.
Shao
,
J.
Wang
,
H.
Wu
,
J.
Liu
,
I. A.
Aksay
, and
Y.
Lin
,
Electroanalysis
22
,
1027
(
2010
).
12.
S.
Pandit
, “
Graphene and graphene oxide based biosensors
,”
ResearchGate
(published online) (
2015
).
13.
14.
C. I. L.
Justino
,
A. R.
Gomes
,
A. C.
Freitas
,
A. C.
Duarte
, and
T. A. P.
Rocha-Santos
,
Trends Anal. Chem.
91
,
53
(
2017
).
15.
C.
Lu
,
H.
Yang
,
C.
Zhu
,
X.
Chen
, and
G.
Chen
,
Angew. Chem.
121
,
4879
(
2009
).
16.
W.
Yang
,
K. R.
Ratinac
,
S. P.
Ringer
,
P.
Thordarson
,
J. J.
Gooding
, and
F.
Braet
,
Angew. Chem. Int. Ed.
49
,
2114
(
2010
).
17.
Y.
Wang
,
Z.
Li
,
J.
Wang
,
J.
Li
, and
Y.
Lin
,
Trends Biotechnol.
29
,
205
(
2011
).
18.
J. H.
Jung
,
D. S.
Cheon
,
F.
Liu
,
K. B.
Lee
, and
T. S.
Seo
,
Angew. Chem.
122
,
5844
(
2010
).
19.
E.
Morales-Narvaez
and
A.
Merkoci
,
Adv. Mater.
24
,
3298
(
2012
).
20.
A.
Kasry
,
A. A.
Ardakani
,
G. S.
Tulevski
,
B.
Menges
,
M.
Copel
, and
L.
Vyklicky
,
J. Phys. Chem. C
116
,
2858
(
2012
).
21.
Z.
Chen
,
S.
Berciaud
,
C.
Nuckolls
,
T. F.
Heinz
, and
L. E.
Brus
,
ACS Nano
4
,
2964
(
2010
).
22.
S.
Eustis
and
M. A.
El-Sayed
,
Chem. Soc. Rev.
35
,
209
(
2006
).
23.
P. K.
Jain
,
X.
Huang
,
I. H.
El-Sayed
, and
M. A.
El-Sayed
,
Plasmonics
2
,
107
(
2007
).
24.
R. M.
Williams
,
C.
Lee
, and
D. A.
Heller
,
ACS Sens.
3
,
1838
(
2018
).
25.
B.
Sharma
,
S.
Chiluwal
, and
R.
Podila
,
Nanoscale
11
,
14010
(
2019
).
26.
B.
Saha
,
T. H.
Evers
, and
M. W.
Prins
,
Anal. Chem.
86
,
8158
(
2014
).
27.
T. C.
Ta
and
M. T.
McDermott
,
Anal. Chem.
72
,
2627
(
2000
).
28.
M.
Lundqvist
,
J.
Stigler
,
G.
Elia
,
I.
Lynch
,
T.
Cedervall
, and
K. A.
Dawson
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
14265
(
2008
).
29.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
30.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
31.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
32.
J. R.
Lakowicz
,
Anal. Biochem.
298
,
1
(
2001
).
33.
K. H.
Drexhage
,
Progress in Optics
, edited by
E.
Wood
(
North Holland
,
Amsterdam
,
1971
), p.
161
.
34.
35.
R. M.
Amos
and
W. L.
Barnes
,
Phys. Rev. B
59
,
7708
(
1999
).
36.
See supplementary material at https://doi.org/10.1116/1.5128889 for Figs. S1–S7.

Supplementary Material

You do not currently have access to this content.