Extracellular matrix provides critical signaling context to resident cells through mechanical and bioactive properties. To realize the potential of tissue engineering and regenerative medicine, biomaterials should allow for the independent control of these features. This study investigates a hydrogel system based on thiol-modified hyaluronic acid (HA-S) and polyethylene glycol diacrylate (PEGDA). The mechanical properties of HAS-PEGDA are dictated by two cytocompatible crosslinking reactions that occur at distinct time points: a rapid, Michael-type nucleophilic addition reaction between HA-thiols and PEG-acrylates and a prolonged maturation of disulfide crosslinks from remaining thiols. It is hypothesized that these reactions would enable the independent tuning of the mechanical and bioactive features of HAS-PEGDA. Rheological studies confirmed that initial gelation reached completion by 1 day, at which point the shear modulus was proportional to the concentration of PEGDA. Over time, the shear modulus evolved dramatically, and final stiffness depended on the availability of HA-thiols. The addition of PEG-monoacrylate (PEGMA) after the initial gelation occupied a percentage of remaining thiols to prevent disulfide crosslinking, decreasing the steady-state stiffness in a dose-dependent manner. A fraction of the PEGMA was then replaced with acrylated peptide ligands to introduce specific bioactivity to the otherwise non-cell-adhesive network. The degree of latent stiffening was controlled by the total amount of peptide-PEGMA, while adhesivity was tuned with the balance of bioactive and inactive peptides. The functional effects of the tunable mechanical and bioadhesive ligand properties were confirmed with assays of cell adhesion and morphology.

3.
B.
Alberts
 et al,
Molecular Biology of the Cell
(
Garland Science
,
New York
,
2002
).
4.
J.
Kuriyan
,
B.
Konforti
, and
D.
Wemmer
,
The Molecules of Life Physical and Chemical Principles.
(
Garland Science, Taylor & Francis Group LLC
,
New York
,
2013
).
5.
P.
Lu
 et al,
Cold Spring Harbor Perspect. Biol.
3
,
a005058
(
2011
).
6.
H. G.
Sundararaghavan
,
S. N.
Masand
, and
D. I.
Shreiber
,
J. Neurotrauma
28
,
2377
(
2011
).
7.
G. P.
Raeber
,
M. P.
Lutolf
, and
J. A.
Hubbell
,
Biophys. J.
89
,
1374
(
2005
).
8.
F.
Gattazzo
,
A.
Urciuolo
, and
P.
Bonaldo
,
Biochim. Biophys. Acta
1840
,
2506
(
2014
).
9.
N. J.
Walters
and
E.
Gentleman
,
Acta Biomater.
11
,
3
(
2015
).
10.
11.
H. G.
Sundararaghavan
,
G. A.
Monteiro
,
B. L.
Firestein
, and
D. I.
Shreiber
,
Biotechnol. Bioeng.
102
,
632
(
2009
).
12.
C.
Grau-Monge
 et al,
Biomed. Mater.
12
,
1
(
2017
).
13.
B. D.
Ratner
,
A. S.
Hoffman
,
F. J.
Schoen
, and
J. E.
Lemons
,
Biomaterials Science: An Introduction to Materials in Medicine
(
Elsevier Academic
,
San Diego
,
2004
).
14.
N.
Huebsch
 et al,
Nat. Mater.
9
,
518
(
2010
).
15.
S.
Nemir
,
H. N.
Hayenga
, and
J. L.
West
,
Biotechnol. Bioeng.
105
,
636
(
2010
).
16.
O.
Chaudhuri
 et al,
Nat. Mater.
15
,
326
(
2016
).
17.
J. R.
García
and
A. J.
García
,
Nat. Mater.
13
,
539
(
2014
).
19.
G.
Bao
and
S.
Suresh
,
Nat. Mater.
2
,
715
(
2003
).
20.
A.
Tajik
 et al,
Nat. Mater.
15
,
1287
(
2016
).
21.
B. N.
Mason
,
J. P.
Califano
, and
C. A.
Reinhart-king
, “
Matrix stiffness a regulator of cellular behavior and tissue formation
,” in
Engineering Biomaterials for Regenerative Medicine Novel Technologies for Clinical Applications
, edited by
S. K.
Bhatia
(
Springer Science+Business Media, LLC
,
New York
,
2012
), pp.
19
38
.
23.
T. J.
Kirby
and
J.
Lammerding
,
Nat. Mater.
15
,
1227
(
2016
).
24.
V. H.
Barocas
and
R. T.
Tranquillo
,
J. Biomech. Eng.
119
,
137
(
1997
).
25.
E. A.
Appel
,
B. L.
Larson
,
K. M.
Luly
,
J. D.
Kim
, and
R.
Langer
,
Adv. Healthcare Mater.
,
4
,
501
(
2015
).
26.
Y.
Lei
,
S.
Gojgini
,
J.
Lam
, and
T.
Segura
,
Biomaterials
32
,
39
(
2011
).
27.
J.
Lam
,
N.
Truong
, and
T.
Segura
,
Acta Biomater.
10
,
1571
(
2014
).
28.
S.
Khetan
 et al,
Nat. Mater.
12
,
458
(
2013
).
29.
K.
Ghosh
,
X.
Ren
,
X. Z.
Shu
,
G. D.
Prestwich
, and
R. A. F.
Clark
,
Tissue Eng.
12
,
601
(
2006
).
30.
X. Z.
Shu
,
Y.
Liu
,
Y.
Luo
,
M. C.
Roberts
, and
G. D.
Prestwich
,
Biomacromolecules
3
,
1304
(
2002
).
31.
X. Z.
Shu
,
Y.
Liu
,
F.
Palumbo
, and
G. D.
Prestwich
,
Biomaterials
24
,
3825
(
2003
).
32.
T. D.
Mehra
,
K.
Ghosh
,
X. Z.
Shu
,
G. D.
Prestwich
, and
R. A. F.
Clark
,
J. Invest. Dermatol.
126
,
2202
(
2006
).
33.
K.
Ghosh
 et al,
Biomacromolecules
6
,
2857
(
2005
).
34.
X. Z.
Shu
,
Y.
Liu
,
F. S.
Palumbo
,
Y.
Luo
, and
G. D.
Prestwich
,
Biomaterials
25
,
1339
(
2004
).
35.
ESIBio. Hystem Hydrogel Kit
, GS311 Technical Data Sheet. See: https://esibio.com/media/wysiwyg/esibio/documents/WEB_Rev._B_GS311_Hystem_7.5_Datasheet.pdf (last accessed January 16, 2019).
36.
J. P.
Tam
,
C. R.
Wu
,
W.
Liu
, and
J. W.
Zhang
,
J. Am. Chem. Soc.
113
,
6657
(
1991
).
37.
C. N.
Yiannios
and
J. V.
Karabinos
,
J. Org. Chem.
28
,
3246
(
1963
).
38.
G. W.
Cline
and
S. B.
Hanna
,
J. Org. Chem.
53
,
3583
(
1988
).
39.
S.
Udenfriend
 et al,
Science
172
,
871
(
1972
).
40.
Sigma-Aldrich.
Fluorescamine (F 9015) Product Information Sheet. See: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/f9015pis.pdf (last accessed January 16, 2019).
41.
G. A.
Monteiro
,
A. V.
Fernandes
,
H. G.
Sundararaghavan
, and
D. I.
Shreiber
,
Tissue Eng. A
17
,
1663
(
2011
).
42.
J.
Schindelin
 et al,
Nat. Methods
9
,
676
(
2012
).
43.
J. L.
Vanderhooft
,
M.
Alcoutlabi
,
J. J.
Magda
, and
G. D.
Prestwich
,
Macromol. Biosci.
9
,
20
(
2009
).
44.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
Wiley
,
New York
,
1996
).
45.
R.
Banerjee
,
J. Biol. Chem.
287
,
4397
(
2012
).
46.
T. I.
Zarembinski
 et al,
Acta Biomater.
10
,
94
(
2014
).
47.
L. A. H.
Van Bergen
,
G.
Roos
, and
F.
De Proft
,
J. Phys. Chem. A
118
,
6078
(
2014
).
48.
M.
Schäfer
and
S.
Werner
,
Pharmacol. Res.
58
,
165
(
2008
).
49.
L. E. S.
Netto
 et al,
Comp. Biochem. Physiol. C Toxicol. Pharmacol.
146
,
180
(
2007
).
50.
P. Y.
Bruice
,
Organic Chemistry
(
Pearson
,
New York
,
2011
).
51.
M. J.
Webber
,
E. A.
Appel
,
E. W.
Meijer
, and
R.
Langer
,
Nat. Mater.
15
,
13
(
2015
).
You do not currently have access to this content.