Surface interactions largely control how biomaterials interact with biology and how many other types of materials function in industrial applications. ToF-SIMS analysis is extremely useful for interrogating the surfaces of complex materials and shows great promise in analyzing biological samples. Previously, the authors demonstrated that segmentation (between 1 and 0.005 m/z mass bins) of the mass spectral axis can be used to differentiate between polymeric materials with both very similar and dissimilar molecular compositions. Here, the same approach is applied for the analysis of proteins on surfaces, focusing on the effect of binding and orientation of an antibody on the resulting ToF-SIMS spectrum. Due to the complex nature of the samples that contain combinations of only 20 amino acids differing in sequence, it is enormously challenging and prohibitively time-consuming to distinguish the minute variances presented in each dataset through manual analysis alone. Herein, the authors describe how to apply the newly developed rapid data analysis workflow to previously published ToF-SIMS data for complex biological materials, immobilized antibodies. This automated method reduced the analysis time by two orders of magnitudes while enhancing data quality and allows the removal of any user bias. The authors used mass segmentation at 0.005 m/z over a 1–300 mass range to generate 60 000 variables. In contrast to the previous manual binning approach, this method captures the entire mass range of the spectrum resulting in an information-rich dataset rather than specifically selected mass spectral peaks. This work constitutes an additional proof of concept that rapid and automated data analyses involving mass-segmented ToF-SIMS spectra can efficiently and robustly analyze a broader range of complex materials, ranging from generic polymers to complicated biological samples. This automated analysis method is also ideally positioned to provide data to train machine learning models of surface-property relationships that can greatly enhance the understanding of how the surface interacts with biology and provides more accurate and robust quantitative predictions of the biological properties of new materials.

1.
T.
Porstmann
and
S. T.
Kiessig
,
J. Immunol. Methods
150
,
5
(
1992
).
2.
P.
Peluso
 et al,
Anal. Biochem.
312
,
113
(
2003
).
3.
N. G.
Welch
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Biointerphases
12
,
02D301
(
2017
).
4.
N. G.
Welch
,
R. M.
Madiona
,
T. B.
Payten
,
R. T.
Jones
,
N.
Brack
,
B. W.
Muir
, and
P. J.
Pigram
,
Langmuir
32
,
8717
(
2016
).
5.
N. G.
Welch
,
R. M. T.
Madiona
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Langmuir
32
,
10824
(
2016
).
6.
N. G.
Welch
,
R. M. T.
Madiona
,
T. B.
Payten
,
C. D.
Easton
,
L.
Pontes-Braz
,
N.
Brack
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Acta Biomater.
55
,
172
(
2017
).
7.
N. G.
Welch
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Biointerphases
12
,
02D301
(
2017
).
8.
T.
Kohonen
,
Biol. Cybern.
43
,
59
(
1982
).
9.
T.
Kohonen
,
Proc. IEEE
78
,
1464
(
1990
).
10.
12.
R. M. T.
Madiona
,
N. G.
Welch
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Biointerphases
12
,
031007
(
2017
).
13.
J. E.
Baio
,
F.
Cheng
,
D. M.
Ratner
,
P. S.
Stayton
, and
D. G.
Castner
,
J. Biomed. Mater. Res. A
97
,
1
(
2011
).
14.
F.
Liu
,
M.
Dubey
,
H.
Takahashi
,
D. G.
Castner
, and
D. W.
Grainger
,
Anal. Chem.
82
,
2947
(
2010
).
15.
H.
Wang
,
D. G.
Castner
,
B. D.
Ratner
, and
S.
Jiang
,
Langmuir
20
,
1877
(
2004
).
16.
A. L.
Hook
 et al,
Nat. Biotechnol.
30
,
868
(
2012
).
17.
P.
Mikulskis
 et al,
ACS Appl. Mater. Interfaces
10
,
139
(
2018
).
19.
M. S.
Wagner
,
D. J.
Graharn
, and
D. G.
Castner
,
Appl. Surf. Sci.
252
,
6575
(
2006
).
20.
N.
Tuccitto
,
A.
Bombace
,
A.
Torrisi
,
A.
Licciardello
,
G.
Lo Sciuto
,
G.
Capizzi
, and
M.
Wozniak
,
Chemom. Intell. Lab
191
,
138
(
2019
).
21.
N.
Tuccitto
,
J. Chemom.
32
,
7
(
2018
).
22.
A. V.
Ievlev
,
A.
Belianinov
,
S.
Jesse
,
D. P.
Allison
,
M. J.
Doktycz
,
S. T.
Retterer
,
S. V.
Kalinin
, and
O. S.
Ovchinnikova
,
Sci. Rep.
7
,
7
(
2017
).
23.
R.
Dell’Anna
,
R.
Canteri
,
N.
Coppede
,
S.
Iannotta
, and
M.
Bersani
,
Surf. Interface Anal.
45
,
1197
(
2013
).
24.
R. M. T.
Madiona
,
N. G.
Welch
,
S. B.
Russell
,
D. A.
Winkler
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Surf. Interface Anal.
50
,
713
(
2018
).
25.
R. M. T.
Madiona
,
S. E.
Bamford
,
D. A.
Winkler
,
B. W.
Muir
, and
P. J.
Pigram
,
Anal. Chem.
90
,
12475
(
2018
).
26.
R. M. T.
Madiona
,
D. A.
Winkler
,
B. W.
Muir
, and
P. J.
Pigram
,
Appl. Surf. Sci.
478
,
465
(
2019
).
27.
R. M. T.
Madiona
,
D. A.
Winkler
,
B. W.
Muir
, and
P. J.
Pigram
,
Appl. Surf. Sci.
487
,
773
(
2019
).
28.
R. M.
Madiona
,
D. L.
Alexander
,
D. A.
Winkler
,
B. W.
Muir
, and
P. J.
Pigram
,
Appl. Surf. Sci.
493
,
1067
(
2019
).
29.
N. G.
Welch
,
C. D.
Easton
,
J. A.
Scoble
,
C. C.
Williams
,
P. J.
Pigram
, and
B. W.
Muir
,
J. Immunol. Methods
438
,
59
(
2016
).
30.
N. G.
Welch
,
R. M.
Madiona
,
C. D.
Easton
,
J. A.
Scoble
,
R. T.
Jones
,
B. W.
Muir
, and
P. J.
Pigram
,
Biointerphases
11
,
041004
(
2016
).
31.
N. G.
Welch
,
J. A.
Scoble
,
C. D.
Easton
,
C. C.
Williams
,
B. J.
Bradford
,
L. K.
Mamedova
,
P. J.
Pigram
, and
B. W.
Muir
,
Anal. Chem.
88
,
10102
(
2016
).
32.
J.
Sato
,
T.
Kawamoto
,
A.
Le
,
J.
Mendelsohn
,
J.
Polikoff
, and
G.
Sato
,
Mol. Biol. Med.
1
,
511
(
1983
).
33.
F.
Grueninger-Leitch
,
A.
D'Arcy
,
B.
D'Arcy
, and
C.
Chène
,
Protein Sci.
5
,
2617
(
1996
).
34.
N. G.
Welch
,
C. J.
Lebot
,
C. D.
Easton
,
J. A.
Scoble
,
P. J.
Pigram
, and
B. W.
Muir
,
J. Immunol. Methods
446
,
70
(
2017
).
35.
D.
Ballabio
,
V.
Consonni
, and
R.
Todeschini
,
Chemom. Intell. Lab. Syst.
98
,
115
(
2009
).
36.
D.
Ballabio
and
M.
Vasighi
,
Chemom. Intell. Lab. Syst.
118
,
24
(
2012
).
37.
See supplementary material at https://doi.org/10.1063/1.5121450 for class weight distributions for the 10 × 10 CP-ANN, samples locations on the 8 × 8 and 10 × 10 CP-ANNs, summary of class weight assignments for the test IgG samples, PC1 – PC4 scores plots for the mass segmented data, Tabulated PCA loadings results, 8 × 8 SKN sample locations and class weight distributions on output map, and 5 predicted samples and their weighting distribution for the antibody and substrate signals.

Supplementary Material

You do not currently have access to this content.