Engineered scaffolds simultaneously exhibiting multiple cues are highly desirable for neural tissue regeneration. Silk fibroin is a promising natural protein material for nerve repair. However, the lack of specific bioactive cues significantly hinders its application. In this study, the electrospun silk fibroin nanofibers with both biochemical and topographical cues were prepared. The alignment of electrospun nanofibers was optimized by controlling the surface linear velocity of a rotating drum. The silk fibroin nanofibers were further functionalized with laminin through covalent binding, confirmed by immunostaining observation. Cell proliferation and neurite outgrowth assays confirmed that the functionalized aligned nanofibers significantly enhanced directional axonal extensions, providing physical and bioactive cues for neurite outgrowth. Furthermore, the tubular scaffolds with longitudinally aligned microchannels were designed by rolling the functionalized silk fibroin nanofibers. The neurite extension across the lumen of the conduit along the direction of the aligned fibers is apparent. These results highlight the ability of laminin-immobilized silk fibroin nanofibers to enhance neurite outgrowth and to control directional neurite extension, providing a useful approach to construct a regenerative microenvironment for nerve repair materials.

1.
2.
M. D.
Sarker
,
N.
Saman
,
A. D.
McInnes
,
D. J.
Schreyer
, and
X.
Chen
,
Prog. Neurobiol.
171
,
125
(
2018
).
3.
J.
Xie
,
M. R.
MacEwan
,
A. G.
Schwartz
, and
Y.
Xia
,
Nanoscale
2
,
35
(
2010
).
4.
Y.
Jia
,
W.
Yang
,
K.
Zhang
,
S.
Qiu
,
J.
Xu
,
C.
Wang
, and
Y.
Chai
,
Acta Biomater.
83
,
291
(
2019
).
5.
Y.
Yang
,
X.
Chen
,
F.
Ding
,
P.
Zhang
,
J.
Liu
, and
X.
Gu
,
Biomaterials
28
,
1643
(
2007
).
6.
A. M.
Hopkins
,
L. D.
Laporte
,
F.
Tortelli
,
E.
Spedden
,
C.
Staii
,
T. J.
Atherton
,
J. A.
Hubbell
, and
D. L.
Kaplan
,
Adv. Funct. Mater.
23
,
5140
(
2013
).
7.
S.
Madduri
,
M.
Papaloizos
, and
B.
Gander
,
Biomaterials
31
,
2323
(
2010
).
8.
C. R.
Wittmer
,
T.
Claudepierre
,
M.
Reber
,
P.
Wiedemann
,
J. A.
Garlick
,
D.
Kaplan
, and
C.
Egles
,
Adv. Funct. Mater.
21
,
4232
(
2011
).
9.
Q.
Zhang
,
Y.
Zhao
,
S.
Yan
,
Y.
Yang
,
H.
Zhao
,
M.
Li
,
S.
Lu
, and
D. L.
Kaplan
,
Acta Biomater.
8
,
2628
(
2012
).
10.
J.
Qu
,
D.
Wang
,
H.
Wang
,
Y.
Dong
,
F.
Zhang
,
B.
Zuo
, and
H.
Zhang
,
J. Biomed. Mater. Res. A
101
,
2667
(
2013
).
11.
S.
Xu
,
X.
Yan
,
Y.
Zhao
,
W.
Wang
, and
Y.
Yang
,
J. Appl. Polym. Sci.
119
,
3490
(
2011
).
12.
R.
You
,
X.
Li
,
Z.
Luo
,
J.
Qu
, and
M.
Li
,
Biointerphases
10
,
011005
(
2015
).
13.
A. J.
Meinel
,
K. E.
Kubow
,
E.
Klotzsch
,
M.
Garcia-Fuentes
,
M. L.
Smith
,
V.
Vogel
,
H. P.
Merkle
, and
L.
Meinel
,
Biomaterials
30
,
3058
(
2009
).
14.
M.
Nune
,
S.
Manchineella
,
T.
Govindaraju
, and
K. S.
Narayan
,
Mater. Sci. Eng. C
94
,
17
(
2019
).
15.
T. M.
Dinis
,
R.
Elia
,
G.
Vidal
,
Q.
Dermigny
,
C.
Denoeud
,
D. L.
Kaplan
,
C.
Egles
, and
F.
Marin
,
J. Mech. Behav. Biomed. Mater.
41
,
43
(
2015
).
16.
A.
Magaz
,
A.
Faroni
,
J. E.
Gough
,
A. J.
Reid
,
X.
Li
, and
J. J.
Blaker
,
Adv. Healthc. Mater.
7
,
1800308
(
2018
).
17.
Y.
Yang
,
F.
Ding
,
J.
Wu
,
W.
Hu
,
W.
Liu
,
J.
Liu
, and
X.
Gu
,
Biomaterials
28
,
5526
(
2007
).
18.
X.
Tang
,
C.
Xue
,
Y.
Wang
,
F.
Ding
,
Y.
Yang
, and
X.
Gu
,
Biomaterials
33
,
3860
(
2012
).
19.
Q.
Zhang
,
S.
Yan
,
R.
You
,
D. L.
Kaplan
,
Y.
Liu
,
J.
Qu
,
X.
Li
,
M.
Li
, and
X.
Wang
,
J. Biomed. Mater. Res. A
104
,
3045
(
2016
).
20.
S.
Das
,
M.
Sharma
,
D.
Saharia
,
K. K.
Sarma
,
M. G.
Sarma
,
B. B.
Borthakur
, and
U.
Bora
,
Biomaterials
62
,
66
(
2015
).
21.
E.
Afjeh-Dana
 et al.,
Int. J. Biol. Macromol.
129
,
1034
(
2019
).
22.
B.
Nieuwenhuis
,
B.
Haenzi
,
M. R.
Andrews
,
J.
Verhaagen
, and
J. W.
Fawcett
,
Biol. Rev.
93
,
1339
(
2018
).
24.
F.
Gonzalez-Perez
,
E.
Udina
, and
X.
Navarro
,
Int. Rev. Neurobiol.
108
,
257
(
2013
).
25.
R. A.
Neal
,
S. S.
Tholpady
,
P. L.
Foley
,
N.
Swami
,
R. C.
Ogle
, and
E. A.
Botchwey
,
J. Biomed. Mater. Res. A
100
,
406
(
2012
).
26.
H. S.
Koh
,
T.
Yong
,
C. K.
Chan
, and
S.
Ramakrishna
,
Biomaterials
29
,
3574
(
2008
).
27.
X. F.
Zhang
,
H. X.
Liu
,
L. S.
Ortiz
,
Z. D.
Xiao
, and
N. P.
Huang
,
J. Tissue Eng. Regener. Med.
12
,
e627
(
2018
).
28.
T.
Wu
,
D.
Li
,
Y.
Wang
,
B.
Sun
,
D.
Li
,
Y.
Morsi
,
H.
El-Hamshary
,
S. S.
Al-Dey
, and
X.
Mo
,
J. Mater. Chem. B
5
,
3186
(
2017
).
29.
M.
Rajabi
,
M.
Firouzi
,
Z.
Hassannejad
,
I.
Haririan
, and
P.
Zahedi
,
J. Biomed. Mater. Res. B
106
,
1595
(
2018
).
30.
A.
Faroni
,
S. A.
Mobasseri
,
P. J.
Kingham
, and
J. R.
Adam
,
Adv. Drug Deliv. Rev.
82
,
160
(
2015
).
31.
C. Y.
Wang
,
K. H.
Zhang
,
C. Y.
Fan
,
X. M.
Mo
,
H. J.
Ruan
, and
F. F.
Li
,
Acta Biomater.
7
,
634
(
2011
).
32.
I. P.
Clements
,
Y.
Kim
,
A. W.
English
,
A.
Chung
, and
R. V.
Bellamkonda
,
Biomaterials
30
,
3834
(
2009
).
33.
H. K.
Frost
,
T.
Andersson
,
S.
Johansson
,
U.
Englund-Johansson
,
P.
Ekström
,
L. B.
Dahlin
, and
F.
Johansson
,
Sci. Rep.
8
,
16716
(
2018
).
34.
Y.
Kim
,
V. K.
Haftel
,
S.
Kumar
, and
R. V.
Bellamkonda
,
Biomaterials
29
,
3117
(
2008
).
35.
A.
Hurtado
,
J. M.
Cregg
,
H. B.
Wang
,
D. F.
Wendell
,
M.
Oudega
,
R. J.
Gilbert
, and
J. W.
McDonald
,
Biomaterials
32
,
6068
(
2011
).
36.
W. E.
Teo
and
S.
Ramakrishna
,
Nanotechnology
17
,
R89
(
2006
).
37.
T. M.
Dinis
,
R.
Elia
,
G.
Vidal
,
A.
Auffret
,
D. L.
Kaplan
, and
C.
Egles
,
ACS Appl. Mater. Interfaces
6
,
16817
(
2014
).
38.
G.
Li
 et al.,
Front. Bioeng. Biotechnol.
7
,
190
(
2019
).
39.
40.
X.
Gu
,
F.
Ding
, and
D. F.
Williams
,
Biomaterials
35
,
6143
(
2014
).
41.
C. R.
Carvalho
,
J.
Silva-Correia
,
J. M.
Oliveira
, and
R. L.
Reis
, “
Nanotechnology in peripheral nerve repair and reconstruction
,”
Adv. Drug Deliv. Rev.
(published online).
42.
See supplementary material at https://doi.org/10.1063/1.5120738 for SEM images of PC12 cells on silk fibroin nanofiber mats.

Supplementary Material

You do not currently have access to this content.