Stents are cardiovascular implants deployed on atherosclerotic arteries that aid in reopening, sustaining, and avoiding their collapse. Nevertheless, postimplantation complications exist, and the risk of the renewal of the plaque subsists. Therefore, enhanced properties are mandatory requirements for clinics. For that purpose, a novel approach allowing the direct-grafting of bioactive molecules on cobalt-chromium devices (L605) has been developed. This original strategy involves the direct plasma functionalization of metallic surfaces with primary amines (–NH2). These groups act as anchor points to covalently graft biomolecules of interest, herein a peptide derived from CD31 (P23) with proendothelialization and antithrombotic properties. However, the biological activity of the grafted peptide could be impacted by its conformation. For this study, glutaric anhydride (GA), a short chain spacer, and polyethylene glycol (PEG) with antifouling properties were used as linking arms (LAs). The covalent grafting of the CD31 agonist on L605 by different LAs (GA-P23 and PEG-P23) was confirmed by XPS and ToF-SIMS analyses. The biological performance of these functionalized surfaces showed that, compared to the electropolished (EP) alloy, grafting the P23 with both LA increases adhesion and proliferation of endothelial cells (ECs) since day 1: EP = 68 ± 10%, GA-P23 = 101 ± 7%, and PEG-P23 = 106 ± 5% of cell viability. Moreover, ECs formed a complete monolayer at the surface, preventing clot formation (hemoglobin-free >80%). The potential of this plasma-based strategy for cardiovascular applications was confirmed by promoting a fast re-endothelialization, by improving the hemocompatibility of the alloy when coupled with the CD31 agonist and by its transfer onto commercial L605 stents, as confirmed by ToF-SIMS.

1.
G.
Mani
,
M. D.
Feldman
,
D.
Patel
, and
C. M.
Agrawal
,
Biomaterials
28
,
1689
(
2007
).
2.
R. A.
Lange
,
J. E.
Willard
, and
L. D.
Hillis
,
Am. J. Med. Sci.
306
,
265
(
1993
).
3.
D. R.
Holmes
,
R. S.
Schwartz
, and
M. W. I.
Webster
,
J. Am. Coll. Cardiol.
17
,
14
(
1991
).
4.
G.
Dangas
and
V.
Fuster
,
Am. Heart J.
132
,
428
(
1996
).
5.
J. F.
Granada
,
G. L.
Kaluza
, and
A.
Raizner
,
Curr. Atheroscler. Rep.
5
,
308
(
2003
).
6.
H.
Takahashi
,
D.
Letourneur
, and
D. W.
Grainger
,
Biomacromolecules
8
,
3281
(
2007
).
7.
M.
Takano
 et al.,
Circ. Cardiovasc. Interv.
3
,
476
(
2010
).
8.
R. A.
Byrne
,
R.
Iijima
,
J.
Mehilli
,
S.
Pinieck
,
O.
Bruskina
,
A.
Schömig
, and
A.
Kastrati
,
JACC Cardiovasc. Interv.
2
,
291
(
2009
).
9.
A.
Kastrati
and
R.
Byrne
,
JACC Cardiovasc. Interv.
4
,
165
(
2011
).
10.
K.
Vallières
,
É.
Petitclerc
, and
G.
Laroche
,
Macromol. Biosci.
7
,
738
(
2007
).
11.
H. C.
Lowe
,
S. N.
Oesterle
, and
L. M.
Khachigian
,
J. Am. Coll. Cardiol.
39
,
183
(
2002
).
12.
J. M.
Kim
 et al.,
Prog. Org. Coat.
78
,
348
(
2015
).
13.
V.
Montaño-Machado
 et al., “
Medical devices: Coronary stents
,” in Reference Module in Biomedical Sciences (
Elsevier
,
2017
), pp
386
398
.
14.
G.
Caligiuri
and
A.
Nicoletti
, WIPO, No. Wo 2010/000741 a1 (7 January 2010)
15.
Z.
Ming
,
Y.
Hu
,
J.
Xiang
,
P.
Polewski
,
P. J.
Newman
, and
D. K.
Newman
,
Blood
117
,
3903
(
2011
).
16.
G.
Cao
,
C. D.
O’Brien
,
Z.
Zhou
,
S. M.
Sanders
,
J. N.
Greenbaum
,
A.
Makrigiannakis
, and
H. M.
DeLisser
,
Am. J. Physiol. Cell Physiol.
282
,
C1181
(
2002
).
17.
P.
Roach
,
D.
Eglin
,
K.
Rohde
, and
C. C.
Perry
,
J. Mater. Sci. Mater. Med.
18
,
1263
(
2007
).
18.
G.
Sydow-Plum
and
M.
Tabrizian
,
Mater. Sci. Technol.
24
,
1127
(
2008
).
19.
M.
Cloutier
,
S.
Turgeon
,
P.
Chevallier
, and
D.
Mantovani
,
Adv. Mater. Res.
409
,
117
(
2011
).
20.
B.
Akhavan
 et al.,
Appl. Mater. Today
16
,
456
(
2019
).
21.
S.
Diaz-Rodriguez
,
P.
Chevallier
, and
D.
Mantovani
,
Plasma Process. Polym.
15
,
1700214
(
2018
).
22.
A. A.
John
,
A. P.
Subramanian
,
M. V.
Vellayappan
,
A.
Balaji
,
S. K.
Jaganathan
,
H.
Mohandas
,
T.
Paramalinggam
,
E.
Supriyanto
, and
M.
Yusof
,
RSC Adv.
5
,
39232
(
2015
).
23.
G.
Honari
,
S. G.
Ellis
,
B. L.
Wilkoff
,
M. A.
Aronica
,
L. G.
Svensson
, and
J. S.
Taylor
,
Contact Dermatitis
59
,
7
(
2008
).
24.
Y.
Hu
,
S. R.
Winn
,
I.
Krajbich
, and
J. O.
Hollinger
,
J. Biomed. Mater. Res.
64A
,
583
(
2003
).
25.
V.
Montaño-Machado
,
L.
Hugoni
,
S.
Díaz-Rodríguez
,
R.
Tolouei
,
E.
Pauthe
, and
D.
Mantovani
,
Phys. Chem. Chem. Phys.
18
,
1
(
2016
).
26.
C.
Holmes
and
M.
Tabrizian
,
Stem Cell Biology and Tissue Engineering in Dental Sciences
(
Elsevier
,
2015
), pp.
187
206
.
27.
C. S.
Campelo
,
P.
Chevallier
,
J. M.
Vaz
,
R. S.
Vieira
, and
D.
Mantovani
,
Mater. Sci. Eng. C
72
,
682
(
2017
).
28.
J. M.
Vaz
,
T. B.
Taketa
,
J.
Hernandez-Montelongo
,
P.
Chevallier
,
M. A.
Cotta
,
D.
Mantovani
, and
M. M.
Beppu
,
Appl. Surf. Sci.
445
,
478
(
2018
).
29.
C.
Loy
,
S.
Meghezi
,
L.
Lévesque
,
D.
Pezzoli
,
H.
Kumra
,
D.
Reinhardt
,
J. N.
Kizhakkedathu
, and
D.
Mantovani
,
Biomater. Sci.
5
,
153
(
2017
).
30.
M.
Henry
and
P.
Bertrand
,
Surf. Interface Anal.
41
,
105
(
2009
).
31.
J.-B.
Lhoest
,
M. S.
Wagner
,
C. D.
Tidwell
, and
D. G.
Castner
,
J. Biomed. Mater. Res.
57
,
432
(
2001
).
32.
S.
Diaz-Rodriguez
,
P.
Chevallier
,
C.
Paternoster
,
V.
Montaño-Machado
,
C.
Noël
,
L.
Houssiau
, and
D.
Mantovani
,
RSC Adv.
9
,
2292
(
2019
).
33.
F.
Copes
 et al.,
Potential. Adv. Med. Sci.
64
,
144
(
2019
).
34.
E.
Dejana
,
M.
Corada
, and
M. G.
Lampugnani
,
FASEB J.
9
,
910
(
1995
).
35.
B.
Dong
,
H.
Jiang
,
S.
Manolache
,
A. C. L.
Wong
, and
F. S.
Denes
,
Langmuir
23
,
7306
(
2007
).
36.
E. C.
Michel
,
V.
Montaño-Machado
,
P.
Chevallier
,
A.
Labbé-Barrère
,
D.
Letourneur
, and
D.
Mantovani
,
Biomatter
4
,
F28805
(
2014
).
You do not currently have access to this content.