Point-of-care (POC) detection and diagnostic platforms provide critical information about health and safety conditions in austere and resource-limited settings in which medical, military, and disaster relief operations are conducted. In this work, low-cost paper materials commonly used in POC devices are coated with liquid-infused polymer surfaces and folded to produce geometries that precisely localize complex liquid samples undergoing concentration by evaporation. Liquid-infused polymer surfaces were fabricated by infusing silicone-coated paper with a chemically compatible polydimethylsiloxane oil to create a liquid overlayer. Tests on these surfaces showed no remaining bacterial cells after exposure to a sliding droplet containing a concentrated solution of Escherichia coli or Staphylococcus aureus, while samples without a liquid layer showed adhesion of both microdroplets and individual bacterial cells. Folding of the paper substrates with liquid-infused polymer surfaces into several functional 3D geometries enabled a clean separation and simultaneous concentration of a liquid containing rhodamine dye into discrete, predefined locations. When used with bacteria, which are known for their ability to adhere to nearly any surface type, functional geometries with liquid-infused polymer surfaces concentrated the cells at levels significantly higher than geometries with dry control surfaces. These results show the potential of synergistically combining paper-based materials with liquid-infused polymer surfaces for the manipulation and handling of complex samples, which may help the future engineering of POC devices.

1.
P. K.
Drain
,
E. P.
Hyle
,
F.
Noubary
,
K. A.
Freedberg
,
D.
Wilson
,
W. R.
Bishai
,
W.
Rodriguez
, and
I. V.
Bassett
,
Lancet Infect. Dis.
14
,
239
(
2014
).
2.
S.
Wang
,
M. A.
Lifson
,
F.
Inci
,
L.
Liang
,
Y.
Sheng
, and
U.
Demirci
,
Expert Rev. Mol. Diagn.
16
,
449
(
2016
).
3.
A. K.
Yetisen
,
M. S.
Akram
, and
C. R.
Lowe
,
Lab Chip
13
,
2210
(
2013
).
4.
M.
Sun
,
R.
Bai
,
X.
Yang
,
J.
Song
,
M.
Qin
,
Z.
Suo
, and
X.
He
,
Adv. Mater.
30
,
e1804916
(
2018
).
5.
M.
Qin
,
M.
Sun
,
M.
Hua
, and
X.
He
,
Curr. Opin. Solid State Mater. Sci.
23
,
13
27
(
2018
).
6.
World Health Organization
,
Managing Epidemics: Key Facts About Major Deadly Diseases
(World Health Organization,
Geneva
,
2018
).
7.
D. D.
Saulnier
,
K. B.
Ribacke
, and
J.
Von Schreeb
,
Prehosp. Disaster Med.
32
,
568
(
2017
).
8.
A.
Culver
,
R.
Rochat
, and
S. T.
Cookson
,
Confl. Health
11
,
32
(
2017
).
9.
D. P.
Regan
and
C.
Howell
,
Curr. Opin. Colloid Interface Sci.
39
,
137
(
2019
).
10.
D. M.
Cate
,
J. A.
Adkins
,
J.
Mettakoonpitak
, and
C. S.
Henry
,
Anal. Chem.
87
,
19
(
2015
).
11.
Y.
Yang
,
E.
Noviana
,
M. P.
Nguyen
,
B. J.
Geiss
,
D. S.
Dandy
, and
C. S.
Henry
,
Anal. Chem.
89
,
71
(
2017
).
12.
T.
Akyazi
,
L.
Basabe-Desmonts
, and
F.
Benito-Lopez
,
Anal. Chim. Acta
1001
,
1
(
2018
).
13.
A. W.
Martinez
,
S. T.
Phillips
,
G. M.
Whitesides
, and
E.
Carrilho
,
Anal. Chem.
82
,
3
(
2010
).
14.
A. W.
Martinez
,
S. T.
Phillips
, and
G. M.
Whitesides
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
19606
(
2008
).
15.
B.
Xu
,
Y.
Du
,
J.
Lin
,
M.
Qi
,
B.
Shu
,
X.
Wen
,
G.
Liang
,
B.
Chen
, and
D.
Liu
,
Anal. Chem.
88
,
11593
(
2016
).
16.
F.
Güder
,
A.
Ainla
,
J.
Redston
,
B.
Mosadegh
,
A.
Glavan
,
T. J.
Martin
, and
G. M.
Whitesides
,
Angew. Chem. Int. Ed.
55
,
5727
(
2016
).
17.
X.
Li
,
D. R.
Ballerini
, and
W.
Shen
,
Biomicrofluidics
6
,
011301
(
2012
).
18.
E. J.
Maxwell
,
A. D.
Mazzeo
, and
G. M.
Whitesides
,
MRS Bull.
38
,
309
(
2013
).
19.
J.-M.
Oh
and
K.-F.
Chow
,
Anal. Methods
7
,
7951
(
2015
).
20.
K.
Mahato
,
A.
Srivastava
, and
P.
Chandra
,
Biosens. Bioelectron.
96
,
246
(
2017
).
21.
G.
Choi
and
S.
Choi
,
Sens. Actuat. B Chem.
237
,
1021
(
2016
).
22.
C.
Howell
,
A.
Grinthal
,
S.
Sunny
,
M.
Aizenberg
, and
J.
Aizenberg
,
Adv. Mater.
5
,
1802724
(
2018
).
23.
I.
Sotiri
,
J. C.
Overton
,
A.
Waterhouse
, and
C.
Howell
,
Exp. Biol. Med.
241
,
909
(
2016
).
24.
S.
Sunny
,
G.
Cheng
,
D.
Daniel
,
P.
Lo
,
S.
Ochoa
,
C.
Howell
,
N.
Vogel
,
A.
Majid
, and
J.
Aizenberg
,
Proc. Natl. Acad. Sci. U.S.A.
113
,
11676
(
2016
).
25.
N.
Juthani
 et al,
Sci. Rep.
6
,
26109
(
2016
).
26.
Y.
Kovalenko
,
I.
Sotiri
,
J. V. I.
Timonen
,
J. C.
Overton
,
G.
Holmes
,
J.
Aizenberg
, and
C.
Howell
,
Adv. Healthc. Mater.
6
,
1
(
2016
).
27.
C.
Howell
,
T. L.
Vu
,
J. J.
Lin
,
S.
Kolle
,
N.
Juthani
,
E.
Watson
,
J. C.
Weaver
,
J.
Alvarenga
, and
J.
Aizenberg
,
ACS Appl. Mater. Interfaces
6
,
13299
(
2014
).
28.
I.
Sotiri
 et al,
Biointerphases
13
,
O6D401
(
2018
).
29.
J.
Aizenberg
,
M.
Aizenberg
,
J.
Cui
,
S.
Dunn
,
B. D.
Hatton
,
C.
Howell
,
P.
Kim
,
T.-S. S.
Wong
, and
X.
Yao
, U.S. patent 9,963,597 B2 (12 July 2018).
30.
J.
Cui
,
D.
Daniel
,
A.
Grinthal
,
K.
Lin
, and
J.
Aizenberg
,
Nat. Mater.
14
,
790
(
2015
).
31.
D.
Zhang
,
Y.
Xia
,
X.
Chen
,
S.
Shi
, and
L.
Lei
,
Langmuir
35
,
8276
8284
(
2019
).
32.
J. C.
Overton
,
A.
Weigang
, and
C.
Howell
,
J. Memb. Sci.
539
,
257
(
2017
).
33.
X.
Yao
,
S. S.
Dunn
,
P.
Kim
,
M.
Duffy
,
J.
Alvarenga
, and
J.
Aizenberg
,
Angew. Chem. Int. Ed.
53
,
4418
(
2014
).
34.
N.
MacCallum
 et al,
ACS Biomater. Sci. Eng.
1
,
43
(
2014
).
35.
Y. H.
Yeong
,
C.
Wang
,
K. J.
Wynne
, and
M. C.
Gupta
,
ACS Appl. Mater. Interfaces
8
,
32050
(
2016
).
36.
C.
Zhang
,
Y.
Xia
,
H.
Zhang
, and
N. S.
Zacharia
,
ACS Appl. Mater. Interfaces
10
,
5892
(
2018
).
37.
V. G.
Damle
 et al,
ACS Appl. Mater. Interfaces
7
,
4224
(
2015
).
38.
C.
Yu
,
X.
Zhu
,
K.
Li
,
M.
Cao
, and
L.
Jiang
,
Adv. Funct. Mater.
27
,
1701605
(
2017
).
39.
A. F.
Stalder
,
T.
Melchior
,
M.
Müller
,
D.
Sage
,
T.
Blu
, and
M.
Unser
,
Colloids Surf. A Physicochem. Eng. Asp.
364
,
72
(
2010
).
40.
C.
Howell
 et al,
Chem. Mater.
27
,
1792
(
2015
).
41.
P.
Kim
,
M. J.
Kreder
,
J.
Alvarenga
, and
J.
Aizenberg
,
Nano Lett.
13
,
1793
(
2013
).
42.
D.
Daniel
,
J. V. I.
Timonen
,
R.
Li
,
S. J.
Velling
, and
J.
Aizenberg
,
Nat. Phys.
13
,
1020
(
2017
).
43.
J.
Zhang
,
A.
Wang
, and
S.
Seeger
,
Adv. Funct. Mater.
24
,
1074
(
2014
).
44.
T.-S.
Wong
,
S. H.
Kang
,
S. K. Y.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
,
Nature
477
,
443
(
2011
).
45.
A. C.
Glavan
,
R. V.
Martinez
,
A. B.
Subramaniam
,
H. J.
Yoon
,
R. M. D.
Nunes
,
H.
Lange
,
M. M.
Thuo
, and
G. M.
Whitesides
,
Adv. Funct. Mater.
24
,
60
(
2014
).
46.
D.
Paulssen
,
S.
Hardt
, and
P. A.
Levkin
,
ACS Appl. Mater. Interfaces
11
,
16130
(
2019
).
47.
Centers for Disease Control and Prevention
, Antibiotic Resistance Threats in the United States (Atlanta,
2013
), see http://www.cdc.gov/drugresistance/threat-report-2013/index.html.
48.
P.-E.
Fournier
,
M.
Drancourt
,
P.
Colson
,
J.-M.
Rolain
,
B.
La Scola
, and
D.
Raoult
,
Nat. Rev. Microbiol.
11
,
574
(
2013
).
49.
C. K.
Murray
,
K.
Wilkins
,
N. C.
Molter
,
F.
Li
,
L.
Yu
,
M. A.
Spott
,
B.
Eastridge
,
L. H.
Blackbourne
, and
D. R.
Hospenthal
,
J. Trauma Inj. Infect. Crit. Care
71
,
S62
(
2011
).
50.
F.
Mattner
,
F.
Bange
,
E.
Meyer
,
H.
Seifert
,
T. A.
Wichelhaus
, and
I. F.
Chaberny
,
Dtsch. Arztebl. Int.
109
,
39
(
2012
).
51.
V. D.
Gordon
,
M.
Davis-Fields
,
K.
Kovach
, and
C. A.
Rodesney
,
J. Phys. D Appl. Phys.
50
,
223002
(
2017
).
52.
M.
Katsikogianni
and
Y. F.
Missirlis
,
Eur. Cell. Mater.
8
,
37
(
2004
).
53.
S.
Yang
,
X.
Dai
,
B. B.
Stogin
, and
T.-S.
Wong
,
Proc. Natl. Acad. Sci. U.S.A.
113
,
268
(
2015
).
54.
S.
Sett
,
X.
Yan
,
G.
Barac
,
L. W.
Bolton
, and
N.
Miljkovic
,
ACS Appl. Mater. Interfaces
9
,
36400
(
2017
).
55.
J. D.
Smith
,
R.
Dhiman
,
S.
Anand
,
E.
Reza-Garduno
,
R. E.
Cohen
,
G. H.
McKinley
, and
K. K.
Varanasi
,
Soft Matter
9
,
1772
(
2013
).
56.
J. H.
Guan
,
G. G.
Wells
,
B.
Xu
,
G.
McHale
,
D.
Wood
,
J.
Martin
, and
S.
Stuart-Cole
,
Langmuir
31
,
11781
(
2015
).
57.
R.
Ozancih
,
R.
Bartholomew
,
C.
Bruckner-Lea
,
C.
Hess
, and
J.
Arce
,
Biodetection Technologies for First Responders: 2015 Edition
(
Pacific Northwest National Laboratory
,
Richland
,
2015
).
58.
J.
Hu
,
S.
Wang
,
L.
Wang
,
F.
Li
,
B.
Pingguan-Murphy
,
T.
Jian
, and
F.
Xu
,
Biosens. Bioelectron.
54
,
585
(
2014
).
59.
J.
Glover
 et al,
State of the Art Report: Methods for Investigating Chemical/Biological Weapons Use
(
Homeland Defense & Security Information Analysis Center
,
Washington, DC
,
2018
).
60.
J.
Ducrée
,
S.
Haeberle
,
S.
Lutz
,
S.
Pausch
,
F.
von Stetten
, and
R.
Zengerle
,
J. Micromech. Microeng.
17
,
S103
(
2007
).
61.
T. R.
Garrett
,
M.
Bhakoo
, and
Z.
Zhang
,
Prog. Nat. Sci.
18
,
1049
1056
(
2008
).
62.
B.
Fleury
,
W. L.
Kelley
,
D.
Lew
,
F.
Götz
,
R. A.
Proctor
, and
P.
Vaudaux
,
BMC Microbiol.
9
,
76
(
2009
).
64.
J.
Li
,
T.
Kleintschek
,
A.
Rieder
,
Y.
Cheng
,
T.
Baumbach
,
U.
Obst
,
T.
Schwartz
, and
P. A.
Levkin
,
ACS Appl. Mater. Interfaces
5
,
6704
(
2013
).
65.
See supplementary material at http://dx.doi.org/10.1116/1.5114804 for additional data on the characterization of liquid-infused polymer surfaces and supplementary microscopy.

Supplementary Material

You do not currently have access to this content.