The development of hydrogels for protein delivery requires protein–hydrogel interactions that cause minimal disruption of the protein’s biological activity. Biological activity can be influenced by factors such as orientational accessibility for receptor binding and conformational changes, and these factors can be influenced by the hydrogel surface chemistry. (Hydroxyethyl)methacrylate (HEMA) hydrogels are of interest as drug delivery vehicles for keratinocyte growth factor (KGF) which is known to promote re-epithelialization in wound healing. The authors report here the surface characterization of three different HEMA hydrogel copolymers and their effects on the orientation and conformation of surface-bound KGF. In this work, they characterize two copolymers in addition to HEMA alone and report how protein orientation and conformation is affected. The first copolymer incorporates methyl methacrylate (MMA), which is known to promote the adsorption of protein to its surface due to its hydrophobicity. The second copolymer incorporates methacrylic acid (MAA), which is known to promote the diffusion of protein into its surface due to its hydrophilicity. They find that KGF at the surface of the HEMA/MMA copolymer appears to be more orientationally accessible and conformationally active than KGF at the surface of the HEMA/MAA copolymer. They also report that KGF at the surface of the HEMA/MAA copolymer becomes conformationally unfolded, likely due to hydrogen bonding. KGF at the surface of these copolymers can be differentiated by Fourier-transform infrared-attenuated total reflectance spectroscopy and time-of-flight secondary ion mass spectrometry in conjunction with principal component analysis. The differences in KGF orientation and conformation between these copolymers may result in different biological responses in future cell-based experiments.

1.
T. R.
Hoare
and
D. S.
Kohane
,
Polymer
49
,
1993
(
2008
).
2.
M. T.
am Ende
and
N. A.
Peppas
,
J. Control. Release
48
,
47
(
1997
).
3.
J. K.
Rao
,
D. V.
Ramesh
, and
K. P.
Rao
,
Biomaterials
15
,
383
(
1994
).
4.
J.
Kopp
 et al,
Mol. Ther.
10
,
86
(
2004
).
5.
G. P.
Marti
,
P.
Mohebi
,
L.
Liu
,
J.
Wang
,
T.
Miyashita
, and
J. W.
Harmon
,
Methods Mol. Biol.
423
,
383
(
2008
).
6.
T. T.
Yen
,
D. T.
Thao
, and
T. L.
Thuoc
,
Protein Pept. Lett.
21
,
306
(
2014
).
7.
S. A.
Burns
and
J. A.
Gardella
,
Appl. Surf. Sci.
255
,
1170
(
2008
).
8.
S. A.
Burns
,
R.
Hard
,
W. L.
Hicks
, Jr.
,
F. V.
Bright
,
D.
Cohan
,
L.
Sigurdson
, and
J. A.
Gardella
, Jr.
,
J. Biomed. Mater. Res. A
94A
,
27
(
2010
).
9.
E. J.
Cho
,
Z.
Tao
,
Y.
Tang
,
E. C.
Tehan
,
F. V.
Bright
,
W. L.
Hicks
,
J. A.
Gardella
, and
R.
Hard
,
Appl. Spectrosc.
56
,
1385
(
2002
).
10.
E. J.
Cho
,
Z.
Tao
,
Y.
Tang
,
E. C.
Tehan
,
F. V.
Bright
,
W. L.
Hicks
,
J. A.
Gardella
, and
R.
Hard
,
J. Biomed. Mater. Res. A
66A
,
417
(
2003
).
11.
W. L.
Hicks
, Jr.
,
L. A.
Hall
, III
,
R.
Hard
,
J.
Gardella
,
F.
Bright
,
N.
Parasharama
,
J.
Lwebuga-Mukasa
, and
L.
Sigurdson
,
Arch. Otolaryngol. Head Neck Surg.
130
,
446
(
2004
).
12.
P. A.
Jimenez
and
M. A.
Rampy
,
J. Surg. Res.
81
,
238
(
1999
).
13.
Y.-R.
Hsu
 et al,
Biochemistry
38
,
2523
(
1999
).
14.
D. M.
Ornitz
,
BioEssays
22
,
108
(
2000
).
15.
T. D.
Osslund
 et al,
Protein Sci.
7
,
1681
(
2008
).
16.
S.
Ye
 et al,
Biochemistry
40
,
14429
(
2001
).
17.
D. E.
Liu
,
C.
Kotsmar
,
F.
Nguyen
,
T.
Sells
,
N. O.
Taylor
,
J. M.
Prausnitz
, and
C. J.
Radke
,
Ind. Eng. Chem. Res.
52
,
18109
(
2013
).
18.
M. L. B.
Palacio
,
S. R.
Schricker
, and
B.
Bhushan
,
J. R. Soc. Interface
8
,
630
(
2011
).
19.
B. D.
Ratner
,
Biomaterials
28
,
5144
(
2007
).
20.
J. M.
Grunkemeier
,
W. B.
Tsai
,
M. R.
Alexander
,
D. G.
Castner
, and
T. A.
Horbett
,
J. Biomed. Mater. Res.
51
,
669
(
2000
).
21.
M.
Henry
,
C.
Dupont-Gillain
, and
P.
Bertrand
,
Langmuir
19
,
6271
(
2003
).
22.
I. M.
Kempson
,
A. L.
Martin
,
J. A.
Denman
,
P. W.
French
,
C. A.
Prestidge
, and
T. J.
Barnes
,
Langmuir
26
,
12075
(
2010
).
23.
E. H.
Tronic
,
O.
Yakovenko
,
T.
Weidner
,
J. E.
Baio
,
R.
Penkala
,
D. G.
Castner
, and
W. E.
Thomas
,
Biointerphases
11
,
029803
(
2016
).
24.
W.-B.
Tsai
,
J. M.
Grunkemeier
, and
T. A.
Horbett
,
J. Biomed. Mater. Res. A
67A
,
1255
(
2003
).
25.
M. S.
Wagner
,
B. J.
Tyler
, and
D. G.
Castner
,
Anal. Chem.
74
,
1824
(
2002
).
26.
Y.
Wu
,
M.
Zhang
,
K. D.
Hauch
, and
T. A.
Horbett
,
J. Biomed. Mater. Res. A
85A
,
829
(
2007
).
27.
M.
Zhang
and
T. A.
Horbett
,
J. Biomed. Mater. Res. A
89A
,
791
(
2008
).
28.
X.
Cheng
,
H. E.
Canavan
,
D. J.
Graham
,
D. G.
Castner
, and
B. D.
Ratner
,
Biointerphases
1
,
61
(
2006
).
29.
L.
Hugoni
,
V.
Montaño-Machado
,
M.
Yang
,
E.
Pauthe
,
D.
Mantovani
, and
J. P.
Santerre
,
Biointerphases
11
,
029809
(
2016
).
30.
L.
Schmüser
,
N.
Encinas
,
M.
Paven
,
D. J.
Graham
,
D. G.
Castner
,
D.
Vollmer
,
H. J.
Butt
, and
T.
Weidner
,
Biointerphases
11
,
031007
(
2016
).
31.
J.
Sommerfeld
,
J.
Richter
,
R.
Niepelt
,
S.
Kosan
,
T. F.
Keller
,
K. D.
Jandt
, and
C.
Ronning
,
Biointerphases
7
,
55
(
2012
).
32.
C. P.
Stallard
,
K. A.
McDonnell
,
O. D.
Onayemi
,
J. P.
O’Gara
, and
D. P.
Dowling
,
Biointerphases
7
,
31
(
2012
).
33.
A. A.
Thyparambil
,
Y.
Wei
, and
R. A.
Latour
,
Biointerphases
10
,
019002
(
2015
).
34.
T. S.
Anirudhan
and
A. M.
Mohan
,
Int. J. Biol. Macromol.
110
,
167
(
2018
).
35.
T. L.
Bowersock
,
W. S. W.
Shalaby
,
M.
Levy
,
W. E.
Blevins
,
M. R.
White
,
D. L.
Borie
, and
K.
Park
,
J. Control. Release
31
,
245
(
1994
).
36.
V.
Kozlovskaya
,
E.
Kharlampieva
,
M. L.
Mansfield
, and
S. A.
Sukhishvili
,
Chem. Mater.
18
,
328
(
2006
).
37.
T. N.
Vo
,
F. K.
Kasper
, and
A. G.
Mikos
,
Adv. Drug Deliv. Rev.
64
,
1292
(
2012
).
38.
A. N.
Zelikin
,
A. D.
Price
, and
B.
Städler
,
Small
6
,
2201
(
2010
).
39.
C.
Alvarez-Lorenzo
,
H.
Hiratani
,
J. L.
Gómez-Amoza
,
R.
Martínez-Pacheco
,
C.
Souto
, and
A.
Concheiro
,
J. Pharm. Sci.
91
,
2182
(
2002
).
40.
J. L.
Bohnert
,
T. A.
Horbett
,
B. D.
Ratner
, and
F. H.
Royce
,
Invest. Ophthalmol. Vis. Sci.
29
,
362
(
1988
).
41.
E. J.
Castillo
,
J. L.
Koenig
,
J. M.
Andersen
, and
J.
Lo
,
Biomaterials
5
,
319
(
1984
).
42.
E. J.
Castillo
,
J. L.
Koenig
, and
J. M.
Anderson
,
Biomaterials
7
,
89
(
1986
).
43.
E. J.
Castillo
,
J. L.
Koenig
,
J. M.
Anderson
, and
N.
Jentoft
,
Biomaterials
7
,
9
(
1986
).
44.
J. E.
Baio
,
T.
Weidner
,
D.
Ramey
,
L.
Pruzinsky
, and
D. G.
Castner
,
Biointerphases
8
,
18
(
2013
).
45.
L.
Baugh
,
T.
Weidner
,
J. E.
Baio
,
P. C.
Nguyen
,
L. J.
Gamble
,
P. S.
Stayton
, and
D. G.
Castner
,
Langmuir
26
,
16434
(
2010
).
46.
J.
Wang
,
S. M.
Buck
, and
Z.
Chen
,
J. Phys. Chem. B
106
,
11666
(
2002
).
47.
E. J.
Castillo
,
J. L.
Koenig
,
J. M.
Anderson
, and
J.
Lo
,
Biomaterials
6
,
338
(
1985
).
48.
K. K.
Chittur
,
Biomaterials
19
,
357
(
1998
).
49.
M. P.
Schmidt
and
C. E.
Martínez
,
Langmuir
32
,
7719
(
2016
).
50.
S. J.
Prestrelski
,
T.
Arakawa
,
W. C.
Kenney
, and
D. M.
Byler
,
Arch. Biochem. Biophys.
285
,
111
(
1991
).
51.
E. D.
Lipp
,
Appl. Spectrosc.
40
,
1009
(
1986
).
52.
D. M.
Byler
and
H.
Susi
,
Biopolymers
25
,
469
(
1986
).
53.
J. L. S.
Lee
and
I. S.
Gilmore
,
Surface Analysis—The Principal Techniques
(John Wiley & Sons Ltd., Chichester,
2009
).
54.
O. D.
Sanni
,
M. S.
Wagner
,
D.
Briggs
,
D. G.
Castner
, and
J. C.
Vickerman
,
Surf. Interface Anal.
33
,
715
(
2002
).
55.
L.
Cao
,
M.
Chang
,
C.-Y.
Lee
,
D. G.
Castner
,
S.
Sukavaneshvar
,
B. D.
Ratner
, and
T. A.
Horbett
,
J. Biomed. Mater. Res. A
81A
,
827
(
2007
).
56.
R. N.
Foster
,
E. T.
Harrison
, and
D. G.
Castner
,
Langmuir
32
,
3207
(
2016
).
57.
R.
Michel
,
S.
Pasche
,
M.
Textor
, and
D. G.
Castner
,
Langmuir
21
,
12327
(
2005
).
58.
M. S.
Wagner
and
D. G.
Castner
,
Langmuir
17
,
4649
(
2001
).
59.
H.
Wang
,
D. G.
Castner
,
B. D.
Ratner
, and
S.
Jiang
,
Langmuir
20
,
1877
(
2004
).
60.
E.
Hsu
,
T.
Osslund
,
R.
Nybo
,
B.-L.
Chen
,
W. C.
Kenney
,
C. F.
Morris
,
T.
Arakawa
, and
L.O.
Narhi
,
Protein Eng. Des. Sel.
19
,
145
(
2006
).
61.
N. T.
Samuel
,
M. S.
Wagner
,
K. D.
Dornfeld
, and
D. G.
Castner
,
Surf. Sci. Spectra
8
,
163
(
2001
).
63.
M. S.
Wagner
,
Anal. Chem.
77
,
911
(
2005
).
64.
A. L.
Hook
,
D. G.
Anderson
,
R.
Langer
,
P.
Williams
,
M. C.
Davies
, and
M. R.
Alexander
,
Biomaterials
31
,
187
(
2010
).
65.
A. J.
Urquhart
,
M.
Taylor
,
D. G.
Anderson
,
R.
Langer
,
M. C.
Davies
, and
M. R.
Alexander
,
Anal. Chem.
80
,
135
(
2008
).
66.
J.
Yang
 et al,
Biomaterials
31
,
8827
(
2010
).
67.
M. C.
Davies
,
R. A. P.
Lynn
,
J.
Hearn
,
A. J.
Paul
,
J. C.
Vickerman
, and
J. F.
Watts
,
Langmuir
12
,
3866
(
1996
).
68.
H. M.
Berman
,
J.
Westbrook
,
Z.
Feng
,
G.
Gilliland
,
T. N.
Bhat
,
H.
Weissig
,
I. N.
Shindyalov
, and
P. E.
Bourne
,
Nucleic Acids Res.
28
,
235
(
2000
).
69.
S.
Harirchian-Saei
,
M. C.
Wang
,
B. D.
Gates
, and
M. G.
Moffitt
,
Langmuir
29
,
10838
(
2012
).
70.
Y.
Mei
 et al,
Adv. Mater.
21
,
2781
(
2009
).
71.
Y.
Mei
 et al,
Nat. Mater.
9
,
768
(
2010
).
72.
S. J.
Sofia
,
V.
Premnath
, and
E. W.
Merrill
,
Macromolecules
31
,
5059
(
1998
).
73.
See supplementary material at https://doi.org/10.1116/1.5051655 for the peak list of amino acids used for PCA, representative ToF-SIMS spectra of the copolymers, and additional PC scores and loadings from Results sections A and C.

Supplementary Material

You do not currently have access to this content.