Poly(N-isopropyl acrylamide) (pNIPAM) is a stimulus-responsive polymer that has been of great interest to the bioengineering community. When the temperature is lowered below its lower critical solution temperature (∼32 °C), pNIPAM rapidly hydrates, and adherent cells detach as intact cell sheets. This cell-releasing behavior in a physiologically relevant temperature range has led to NIPAM's use for engineered tissues and other devices. In a previous study, however, the authors found that although most techniques used to polymerize NIPAM yield biocompatible films, some formulations from commercially-available NIPAM (cpNIPAM) can be cytotoxic. In this work, the authors investigate the reasons underlying this anomaly. The authors evaluated the response of a variety of cell types (e.g., bovine aortic endothelial cells, BAECs; monkey kidney epithelial cells, Vero cells; and mouse embryonic fibroblasts, 3T3s) after culture on substrates spin-coated with sol-gel (spNIPAM) and commercially-prepared (cpNIPAM). The relative biocompatibility of each cell type was evaluated using observations of its cell morphology and function (e.g., XTT and Live/Dead assays) after 48 and 96 h in culture. In addition, the substrates themselves were analyzed using NMR, goniometry, and XPS. The authors find that all the cell types were compromised by 96 h in culture with cpNIPAM, although the manner in which the cells are compromised differs; in particular, while Vero and 3T3 cells appear to be undergoing cytotoxic death, BAECs undergo apoptic death. The authors believe that this result is due to a combination of factors, including the presence of short chain oligomers of NIPAM in the commercially-available preparation. This work will provide valuable insights into the cytotoxicity of commercially-prepared polymer substrates for this type of bioengineering work and therefore into the applicability of cells grown on such surfaces for human subjects.

1.
X.
Cheng
,
H. E.
Canavan
,
M. J.
Stein
,
J. R.
Hull
,
J.
Kweskin
,
M. S.
Wagner
,
G. A.
Somorjai
,
D. G.
Castner
, and
B. D.
Ratner
,
Langmuir
21
,
7833
(
2005
).
2.
J. A.
Reed
,
A. E.
Lucero
,
S.
Hu
,
L. K.
Ista
,
M. T.
Bore
,
G. P.
López
, and
H. E.
Canavan
,
ACS Appl. Mater. Interfaces
2
,
1048
(
2010
).
3.
J. A.
Reed
,
S. A.
Love
,
A. E.
Lucero
,
C. L.
Haynes
, and
H. E.
Canavan
,
Langmuir
28
,
2281
(
2012
).
4.
K.
Fukumori
,
Y.
Akiyama
,
Y.
Kumashiro
,
J.
Kobayashi
,
M.
Yamato
,
K.
Sakai
, and
T.
Okano
,
Macromol. Biosci.
10
,
1117
(
2010
).
5.
J.
Yang
,
M.
Yamato
,
K.
Nishida
,
T.
Ohki
,
M.
Kanzaki
,
H.
Sekine
,
T.
Shimizu
, and
T.
Okano
,
J. Control. Release
116
,
193
(
2006
).
6.
B. M.
Bluestein
,
J. A.
Reed
, and
H. E.
Canavan
,
Appl. Surf. Sci.
392
,
950
(
2017
).
7.
K.
Cicotte
,
J. A.
Reed
,
P. A. H.
Nguyen
,
J.
De Lora
,
E. L.
Hedberg-Dirk
, and
H. E.
Canavan
,
Biointerphases
12
,
02C417
(
2017
).
8.
N. G.
Patel
and
G.
Zhang
,
Organogenesis
9
,
93
(
2013
).
9.
M. A.
Cooperstein
,
P. A. H.
Nguyen
, and
H. E.
Canavan
,
Biointerphases
12
,
02C401
(
2017
).
10.
C. T.
Schwall
and
I. A.
Banerjee
,
Materials
2
,
577
(
2009
).
11.
D.
Mortisen
,
M.
Peroglio
,
M.
Alini
, and
D.
Eglin
,
Biomacromolecules
11
,
1261
(
2010
).
12.
N. S.
Rejinold
,
T.
Baby
,
K. P.
Chennazhi
, and
R.
Jayakumar
,
Colloids Surf. B Biointerfaces
114
,
209
(
2014
).
13.
S. T.
Jones
,
Z.
Walsh-Korb
,
S. J.
Barrow
,
S. L.
Henderson
, and
O. A.
Scherman
,
Am. Chem. Soc. Nano
10
,
3158
(
2016
).
14.
H.
Kim
,
K.
Kim
, and
S. J.
Lee
,
NPG Asia Mater.
9
,
e445
(
2017
).
15.
N-Isopropylacrylamide Safety Data Sheet
(
Sigma-Aldrich
,
Saint Louis, MO
,
2017
).
16.
H.
Vihola
,
A.
Laukkanen
,
L.
Valtola
,
H.
Tenhu
, and
J.
Hirvonen
,
Biomaterials
26
,
3055
(
2005
).
17.
T.
Deptuła
,
A.
Warowicka
,
A.
Woźniak
,
M.
Grzeszkowiak
,
M.
Jarzębski
,
M.
Bednarowicz
,
A.
Patkowski
, and
R.
Słomski
,
Acta Biochim. Pol.
62
,
311
(
2015
).
18.
A. S.
Wadajkar
,
B.
Koppolu
,
M.
Rahimi
, and
K. T.
Nguyen
,
J. Nanoparticle Res.
11
,
1375
(
2009
).
19.
Y.-Y.
Li
,
X.-Z.
Zhang
,
H.
Cheng
,
J.-L.
Zhu
,
U.-N.
Li
,
S.-X.
Cheng
, and
R.-X.
Zhuo
,
Nanotechnology
18
,
505101
(
2007
).
20.
M. A.
Cooperstein
and
H. E.
Canavan
,
Biointerphases
8
,
19
(
2013
).
21.
XTT Cell Viability Kit Product Information (Biotium, Fremont, CA, n.d.).
22.
K. N.
Wilde
, “In vitro cytotoxicity and skin irritation testing of antimicrobial conjugated electrolytes: Interactions with mammalian cells,” Doctoral dissertation (
University of New Mexico
,
2012
).
23.
H. E.
Canavan
,
J. Appl. Biomater. Biomech.
6
,
81
(
2013
).
24.
T. L.
Riss
,
R. A.
Moravec
,
A. L.
Niles
,
S.
Duellman
,
H. A.
Benink
,
T. J.
Worzella
, and
L.
Minor
., “
Cell viability assays
,” in Assay Guidance Manual (
Eli Lilly & Company and the National Center for Advancing Translational Sciences
,
Bethesda, MD
,
2013
), Vol. 114, pp.
785
796
.
25.
M.
Tenopoulou
,
T.
Kurz
,
P.
Doulias
,
D.
Galaris
, and
U. T.
Brunk
,
Biochem. J.
266
,
261
(
2007
).
26.
See supplementary material at https://doi.org/10.1116/1.5045142 for representative XPS spectra and cell images of BAECs pop off from control, cpNIPAM, and spNIPAM surfaces.

Supplementary Material

You do not currently have access to this content.