Bacteria in flowing media are exposed to shear forces exerted by the fluid. Before a biofilm can be formed, the bacteria have to attach to a solid surface and have to resist these shear forces. Here, the authors determined dislodgement forces of single Paracoccus seriniphilus bacteria by means of lateral force microscopy. The first measurement set was performed on very flat glass and titanium (both as very hydrophilic samples with water contact angles below 20°) as well as highly oriented pyrolytic graphite (HOPG) and steel surfaces (both as more hydrophobic surfaces in the context of biological interaction with water contact angles above 50°). The different surfaces also show different zeta potentials in the range between −18 and −108 mV at the measurement pH of 7. The second set comprised titanium with different RMS (root mean square) roughness values from a few nanometers up to 22 nm. Lateral forces between 0.5 and 3 nN were applied. For Paracoccus seriniphilus, the authors found as a general trend that the surface energy of the substrate at comparable roughness determines the detachment process. The surface energy is inversely proportional to the initial adhesion forces of the bacterium with the surface. The higher the surface energy (and the lower the initial adhesion force) is, the easier the dislodgement of the bacteria happens. In contrast, electrostatics play only a secondary role in the lateral dislodgement of the bacteria and may come only into play if surface energies are the same. Furthermore, the surface chemistry (glass, titanium, and steel as oxidic surfaces and HOPG as a nonoxidic surface) seems to play an important role because HOPG does not completely follow the above mentioned general trend found for the oxide covered surfaces. In addition, the roughness of the substrates (made of the same material) is limiting the lateral dislodgement of the bacteria. All examined structures with RMS roughness of about 8–22 nm on titanium prevent the bacteria from the lateral dislodgement compared to polished titanium with an RMS roughness of about 3 nm.

1.
K. C.
Marshall
,
R.
Sout
, and
R.
Mitchell
,
J. Gen. Microbiol.
68
,
337
(
1971
).
2.
R.
van Houdt
and
C. W.
Michiels
,
Res. Microbiol.
156
,
626
(
2005
).
3.
R. M.
Donlan
,
Emerg. Infect. Dis.
8
,
881
(
2002
).
4.
M.
Katsikogianni
and
Y. F.
Missirlis
,
eCM
8
,
37
(
2004
).
5.
R. D.
Boyd
,
J.
Verran
,
M. V.
Jones
, and
M.
Bhakoo
,
Langmuir
18
,
2343
(
2002
).
6.
S. M.
Deupree
and
M. H.
Schoenfisch
,
Langmuir
24
,
4700
(
2008
).
7.
W. E.
Thomas
,
E.
Trintchina
,
M.
Forero
,
V.
Vogel
, and
E. V.
Sokurenko
,
Cell
109
,
913
(
2002
).
8.
A.
Rochex
,
J.-J.
Godon
,
N.
Bernet
, and
R.
Escudié
,
Water Res.
42
,
4915
(
2008
).
9.
10.
F.
Ming
,
W. J.
Whish
,
J.
Hubble
, and
R.
Eisenthal
,
Enzyme Microb. Technol.
22
,
94
(
1998
).
11.
J. T.
Holah
and
R. H.
Thorpe
,
J. Appl. Bacteriol.
69
,
599
(
1990
).
12.
M.-N.
Leclercq-Perlat
and
M.
Lalande
,
J. Food. Eng.
23
,
501
(
1994
).
13.
D. R.
Korber
,
A.
Choi
,
G. M.
Wolfaardt
,
S. C.
Ingham
, and
D. E.
Caldwell
,
Appl. Environ. Microbiol.
63
,
3352
(
1997
).
14.
A.
Sénéchal
,
S. D.
Carrigan
, and
M.
Tabrizian
,
Langmuir
20
,
4172
(
2004
).
15.
T.
Zhang
,
Y.
Chao
,
K.
Shih
,
X.-Y.
Li
, and
H. H. P.
Fang
,
Ultramicroscopy
111
,
131
(
2011
).
16.
R.
Pukall
,
M.
Laroche
,
R. M.
Kroppenstedt
,
P.
Schumann
,
E.
Stackebrandt
, and
R.
Ulber
,
Int. J. Syst. Evol. Microbiol.
53
,
443
(
2003
).
17.
W.-C.
Huang
,
D. E.
Ramey
, and
S.-T.
Yang
,
Appl. Biochem. Biotechnol.
115
,
887
(
2004
).
18.
B.
Rosche
,
X. Z.
Li
,
B.
Hauer
,
A.
Schmid
, and
K.
Buehler
,
Trends Biotechnol.
27
,
636
(
2009
).
19.
N.
Qureshi
,
B. A.
Annous
,
T. C.
Ezeji
,
P.
Karcher
, and
I. S.
Maddox
,
Microb. Cell Fact.
4
,
24
(
2005
).
20.
R.
Gross
,
K.
Lang
,
K.
Bühler
, and
A.
Schmid
,
Biotechnol. Bioeng.
105
,
705
(
2010
).
21.
A.
Skovager
,
K.
Whitehead
,
H.
Siegumfeldt
,
H.
Ingmer
,
J.
Verran
, and
N.
Arneborg
,
Int. J. Food. Microbiol.
157
,
174
(
2012
).
22.
K.
Muffler
,
B.
Sana
,
J.
Mukherjee
, and
R.
Ulber
,
Handbook of Marine Biotechnology
(
Springer
,
Berlin
,
2015
), pp.
413
429
.
23.
N.
Davoudi
,
K.
Huttenlochner
,
J.
Chodorski
,
C.
Schlegel
,
M.
Bohley
,
C.
Müller-Renno
,
J. C.
Aurich
,
R.
Ulber
, and
C.
Ziegler
,
Biointerphases
12
,
05G606
(
2017
).
24.
Collaborative Research Center CRC 926 “Microscale Morphology of Component Surfaces” funded by Deutsche Forschungsgemeinschaft, for details see http://www.sfb926.de.
25.
C.
Schlegel
 et al,
Eng. Life Sci.
17
,
865
(
2017
).
26.
M.
Bohley
,
R.
Merz
,
C.
Müller-Renno
,
L. G.
Reichenbach
,
N.
Davoudi
,
C.
Ziegler
,
M.
Kopnarski
, and
J. C.
Aurich
,
Werkstattstechnik Online
9
,
586
(
2014
).
27.
M.
Fingerle
 et al,
Biointerphases
10
,
19007
(
2015
).
28.
K.
Huttenlochner
,
C.
Müller-Renno
,
C.
Ziegler
,
R.
Merz
,
B.
Merz
,
M.
Kopnarski
,
J.
Chodorski
,
C.
Schlegel
, and
R.
Ulber
,
Biointerphases
12
,
02C404
(
2017
).
29.
Y. H.
An
and
R. J.
Friedman
,
Handbook of Bacterial Adhesion
(
Humana
,
Totowa
,
NJ
,
2010
), pp.
644
.
30.
D. K.
Owens
and
R. C.
Wendt
,
J. Appl. Polym. Sci.
13
,
1741
(
1969
).
31.
B. J.
Kirby
and
E. F.
Hasselbrink
,
Electrophoresis
25
,
187
(
2004
).
32.
H.
Morisaki
,
S.
Nagai
,
H.
Ohshima
,
E.
Ikemoto
, and
K.
Kogure
,
Microbiology
145
,
2797
(
1999
).
33.
H.
Ohshima
,
J. Colloid Interface Sci.
163
,
474
(
1994
).
34.
Y.-M.
Zhang
and
C. O.
Rock
,
Nat. Rev. Microbiol.
6
,
222
(
2008
).
35.
L.
Chopinet
,
C.
Formosa
,
M. P.
Rols
,
R. E.
Duval
, and
E.
Dague
,
Micron
48
,
26
(
2013
).
36.
J. L.
Hutter
and
John
Bechhoefer
,
Rev. Sci. Instrum.
64
,
1868
(
1993
).
37.
W.
Liu
,
K.
Bonin
, and
M.
Guthold
,
Rev. Sci. Instrum.
78
,
63707
(
2007
).
38.
G. M.
Bruinsma
,
M.
Rustema-Abbing
,
Henny C.
van der Mei
, and
H. J.
Busscher
,
J. Microbiol. Methods
45
,
95
(
2001
).
39.
T.
John
,
M. F.
Refojo
,
L.
Hanninen
,
F. L.
Leong
,
A.
Medina
, and
K. R.
Kenyon
,
Cornea
8
,
21
(
1989
).
40.
J. M.
Berg
,
L. G. T.
Eriksson
,
P. M.
Claesson
, and
K. G. N.
Borve
,
Langmuir
10
,
1225
(
1994
).
41.
A. S.
Bolina
,
A. J.
Wolff
, and
W. A.
Brown
,
J. Phys. Chem. B
109
,
16836
(
2005
).
42.
J.
Luo
,
W.-B.
Chan
,
L.
Wang
, and
C.-J.
Zhong
,
Int. J. Antimicrob. Agents
36
,
549
(
2010
).
43.
N.
Davoudi
,
C.
Müller-Renno
,
C.
Ziegler
,
I.
Raid
,
J.
Seewig
,
C.
Schlegel
,
K.
Muffler
, and
R.
Ulber
,
Biointerphases
10
,
19004
(
2015
).
44.
N.
Thewes
,
P.
Loskill
,
P.
Jung
,
H.
Peisker
,
M.
Bischoff
,
M.
Herrmann
, and
K.
Jacobs
,
Beilstein J. Nanotechnol.
5
,
1501
(
2014
).
45.
C.
Müller
,
A.
Lüders
,
W.
Hoth-Hannig
,
M.
Hannig
, and
C.
Ziegler
,
Langmuir
26
,
4136
(
2010
).
46.
T. R.
Scheuerman
,
A. K.
Camper
, and
M. A.
Hamilton
,
J. Colloid Interface Sci.
208
,
23
(
1998
).
47.
See supplementary material at https://doi.org/10.1116/1.5049226 for the video data to see the movement of the bacterium during the scanning of the cantilever.

Supplementary Material

You do not currently have access to this content.