In this study, the influence of two different cluster primary ions in laser secondary neutral mass spectrometry (Laser-SNMS) has been investigated. Despite the many advantages of Laser-SNMS, fragmentation of neutral organic molecules during both sputtering and photoionization has limited its efficiency for the study of large organic and biological molecules. Cluster ion sputtering, and in particular large argon gas cluster sputtering, has been proposed as a means of reducing this fragmentation. Molecules of 9-fluorenylmethoxycarbonyl-pentafluoro-l-phenylalanine were sputtered using Bi3+ and Ar2000+ cluster primary ions, and the desorbed neutral species (“secondary neutrals”) were postionized using a 7.87 eV vacuum ultraviolet laser light fluorine excimer laser. By varying timing parameters and laser power density, time-of-flight and laser power density distributions were obtained to investigate the fragmentation and energy distributions of the sputtered neutral species. Changing from 30 keV Bi3+ sputtering to 10 keV Ar2000+ resulted in a significant reduction in fragmentation of the molecule as well as a suppression of the high background that results from metastable decay of highly excited ions, yielding significantly improved detection of the intact molecule and characteristic fragments. Analysis of the influence of laser power density and laser pulse delay time indicates a reduction of fragmentation in both the sputtering phase and the photoionization phase. This study demonstrates the importance of soft desorption for efficient laser postionization of large organic molecules and shows the potential for improving the efficiency of laser postionization by using large gas cluster ion sputtering.

1.
C. T.
Dollery
,
Clin. Pharmacol. Ther.
93
,
263
(
2013
).
2.
F.
Benabdellah
,
A.
Seyer
,
L.
Quinton
,
D.
Touboul
,
A.
Brunelle
, and
O.
Laprevote
,
Anal. Bioanal. Chem.
396
,
151
(
2010
).
3.
F.
Draude
,
M.
Körsgen
,
A.
Pelster
,
T.
Schwerdtle
,
J.
Muthing
, and
H. F.
Arlinghaus
,
Anal. Bioanal. Chem.
407
,
2203
(
2015
).
4.
M. K.
Passarelli
and
N.
Winograd
,
Biochim. Biophys. Acta
1811
,
976
(
2011
).
5.
B. J.
Tyler
,
S.
Dambach
,
S.
Galla
,
R. E.
Peterson
, and
H. F.
Arlinghaus
,
Anal. Chem.
84
,
76
(
2012
).
6.
J.-L.
Vorng
 et al,
Anal. Chem.
88
,
11028
(
2016
).
7.
B.
Hagenhoff
,
Mikrochim. Acta
132
,
259
(
2000
).
8.
C. M.
Mahoney
and
G.
Gillen
,
Cluster Secondary Ion Mass Spectrometry: Principles and Applications
, 1st ed. (
Wiley
,
Hoboken, NJ
,
2013
), pp.
1
, 11.
9.
S.
Ninomiya
,
K.
Ichiki
,
H.
Yamada
,
Y.
Nakata
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Rapid Commun. Mass Spectrom.
23
,
1601
(
2009
).
10.
E.
Niehuis
,
R.
Möllers
,
D.
Rading
,
H.-G.
Cramer
, and
R.
Kersting
,
Surf. Interface Anal.
45
,
158
(
2013
).
11.
D.
Rading
,
R.
Moellers
,
H.-G.
Cramer
, and
E.
Niehuis
,
Surf. Interface Anal.
45
,
171
(
2013
).
12.
S.
Sheraz (née Rabbani)
,
A.
Barber
,
I.
Berrueta Razo
,
J.
Fletcher
,
N.
Lockyer
, and
J.
Vickerman
,
Surf. Interface Anal.
46
,
51
(
2014
).
13.
A.
Wucher
,
H.
Tian
, and
N.
Winograd
,
Rapid Commun. Mass Spectrom.
28
,
396
(
2014
).
14.
S.
Holzer
,
S.
Krivec
,
S.
Kayser
,
J.
Zakel
, and
H.
Hutter
,
Anal. Chem.
89
,
2377
(
2017
).
15.
H. F.
Arlinghaus
and
C. F.
Joyner
,
J. Vac. Sci. Technol., B
14
,
294
(
1996
).
16.
F.
Kollmer
,
N.
Bourdos
,
R.
Kamischke
, and
A.
Benninghoven
,
Appl. Surf. Sci.
203–204
,
238
(
2003
).
17.
M.
Wahl
,
D.
Koch
,
W.
Berthold
, and
A.
Wucher
,
Fresenius' J. Anal. Chem.
353
,
354
(
1995
).
18.
H. F.
Arlinghaus
,
C.
Kriegeskotte
,
M.
Fartmann
,
A.
Wittig
,
W.
Sauerwein
, and
D.
Lipinsky
,
Appl. Surf. Sci.
252
,
6941
(
2006
).
19.
M.
Hesse
,
H.
Meier
, and
B.
Zeeh
,
Spectroscopic Methods in Organic Chemistry
, 2nd ed. (
Thieme Medical
,
New York
,
2008
).
20.
S.
Galla
,
A.
Pelster
,
F.
Draude
, and
H.
Arlinghaus
,
Surf. Interface Anal.
45
,
31
(
2013
).
21.
A.
Pelster
,
B. J.
Tyler
,
M.
Körsgen
,
R.
Kassenböhmer
,
R. E.
Peterson
,
M.
Stöver
,
W. E.
Unger
, and
H. F.
Arlinghaus
,
Biointerphases
11
,
041001
(
2016
).
22.
A.
Pelster
,
M.
Körsgen
,
T.
Kurosawa
,
H.
Morita
, and
H. F.
Arlinghaus
,
Anal. Chem.
88
,
9638
(
2016
).
23.
A.
Pelster
,
M.
Körsgen
,
M.
Heeger
, and
H. F.
Arlinghaus
,
J. Phys. Chem. C
121
,
15266
(
2017
).
24.
A. G.
Shard
,
S. J.
Spencer
,
S. A.
Smith
,
R.
Havelund
, and
I. S.
Gilmore
,
Int. J. Mass Spectrom.
377
,
599
(
2015
).
25.
P. D.
Edirisinghe
,
S. S.
Lateef
,
C. A.
Crot
,
L.
Hanley
,
M. J.
Pellin
,
W. F.
Calaway
, and
J. F.
Moore
,
Anal. Chem.
76
,
4267
(
2004
).
26.
V.
Cristaudo
,
C.
Poleunis
,
B.
Czerwinski
, and
A.
Delcorte
,
Surf. Interface Anal.
46
,
79
(
2014
).
27.
M. P.
Seah
,
R.
Havelund
, and
I. S.
Gilmore
,
J. Phys. Chem. C
118
,
12862
(
2014
).
28.
S.
Ninomiya
,
Y.
Nakata
,
K.
Ichiki
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Nucl. Instrum. Methods B
256
,
493
(
2007
).
29.
H.
Gnaser
,
K.
Ichiki
, and
J.
Matsuo
,
Rapid Commun. Mass Spectrom.
26
,
1
(
2012
).
30.
S.
Kayser
,
D.
Rading
,
R.
Moellers
,
F.
Kollmer
, and
E.
Niehuis
,
Surf. Interface Anal.
45
,
131
(
2013
).
31.
K.
Shen
,
A.
Wucher
, and
N.
Winograd
,
J. Phys. Chem. C
119
,
15316
(
2015
).
32.
M.
Lorenz
,
A. G.
Shard
,
J. D. P.
Counsell
,
S.
Hutton
, and
I. S.
Gilmore
,
J. Phys. Chem. C
120
,
25317
(
2016
).
You do not currently have access to this content.