In this study, the influence of two different cluster primary ions in laser secondary neutral mass spectrometry (Laser-SNMS) has been investigated. Despite the many advantages of Laser-SNMS, fragmentation of neutral organic molecules during both sputtering and photoionization has limited its efficiency for the study of large organic and biological molecules. Cluster ion sputtering, and in particular large argon gas cluster sputtering, has been proposed as a means of reducing this fragmentation. Molecules of 9-fluorenylmethoxycarbonyl-pentafluoro-l-phenylalanine were sputtered using Bi3+ and Ar2000+ cluster primary ions, and the desorbed neutral species (“secondary neutrals”) were postionized using a 7.87 eV vacuum ultraviolet laser light fluorine excimer laser. By varying timing parameters and laser power density, time-of-flight and laser power density distributions were obtained to investigate the fragmentation and energy distributions of the sputtered neutral species. Changing from 30 keV Bi3+ sputtering to 10 keV Ar2000+ resulted in a significant reduction in fragmentation of the molecule as well as a suppression of the high background that results from metastable decay of highly excited ions, yielding significantly improved detection of the intact molecule and characteristic fragments. Analysis of the influence of laser power density and laser pulse delay time indicates a reduction of fragmentation in both the sputtering phase and the photoionization phase. This study demonstrates the importance of soft desorption for efficient laser postionization of large organic molecules and shows the potential for improving the efficiency of laser postionization by using large gas cluster ion sputtering.
Skip Nav Destination
Laser postionization of neutral molecules sputtered using bismuth and argon cluster primary ions
Article navigation
June 2018
Research Article|
March 02 2018
Laser postionization of neutral molecules sputtered using bismuth and argon cluster primary ions
Special Collection:
Special Topic Collection: Secondary Ion Mass Spectrometry (SIMS)
Marcel Heeger;
Marcel Heeger
a)
University of Münster, Physikalisches Institut
, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
Search for other works by this author on:
Bonnie J. Tyler;
Bonnie J. Tyler
University of Münster, Physikalisches Institut
, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
Search for other works by this author on:
Martin Körsgen;
Martin Körsgen
University of Münster, Physikalisches Institut
, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
Search for other works by this author on:
Heinrich F. Arlinghaus
Heinrich F. Arlinghaus
University of Münster, Physikalisches Institut
, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
Search for other works by this author on:
a)
Electronic mail: marcel.heeger@uni-muenster.de
Biointerphases 13, 03B412 (2018)
Article history
Received:
December 15 2017
Accepted:
February 20 2018
Citation
Marcel Heeger, Bonnie J. Tyler, Martin Körsgen, Heinrich F. Arlinghaus; Laser postionization of neutral molecules sputtered using bismuth and argon cluster primary ions. Biointerphases 1 June 2018; 13 (3): 03B412. https://doi.org/10.1116/1.5019653
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00