Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media.

1.
P. A.
Dhawan
,
V.
Sharma
, and
D.
Parmar
,
Nanotoxicology
3
,
1
(
2009
).
2.
L.
Stander
and
L.
Theodore
,
Int. J. Environ. Res. Public Health
8
,
470
(
2011
).
3.
A. E.
Nel
,
L.
Mädler
,
D.
Velegol
,
T.
Xia
,
E. M. V.
Hoek
,
P.
Somasundaran
,
F.
Klaessig
,
V.
Castranova
, and
M.
Thompson
,
Nat. Mater.
8
,
543
(
2009
).
4.
S.
Mitragotri
and
J.
Lahann
,
Nat. Mater.
8
,
15
(
2009
).
5.
S.
Behzadi
 et al,
Chem. Soc. Rev.
46
,
4218
(
2017
).
6.
J.
Deng
and
C.
Gao
,
Nanotechnology
27
,
412002
(
2016
).
7.
D.
Vollath
,
Nanomaterials: An Introduction to Synthesis, Properties and Applications
, 2nd ed. (
Wiley-VCH
,
Weinheim, Germany
,
2013
).
8.
Q.
Li
,
T.-Y.
Luo
,
M. G.
Taylor
,
S.
Wang
,
X.
Zhu
,
Y.
Song
,
G.
Mpourmpakis
,
N. L.
Rosi
, and
R.
Jin
,
Sci. Adv.
3
,
e1603193
(
2017
).
9.
T.
Cedervall
,
I.
Lynch
,
S.
Lindman
,
T.
Berggård
,
E.
Thulin
,
H.
Nilsson
,
K. A.
Dawson
, and
S.
Linse
,
Proc. Natl. Acad. Sci.
104
,
2050
(
2007
).
10.
H.
Zhang
 et al,
ACS Nano
6
,
4349
(
2012
).
11.
B.
Fahmy
and
S. A.
Cormier
,
Toxicol. In Vitro
23
,
1365
(
2009
).
12.
Y.
Yu
and
S.
Granick
,
J. Am. Chem. Soc.
131
,
14158
(
2009
).
13.
S.
Zhang
,
A.
Nelson
, and
P. A.
Beales
,
Langmuir
28
,
12831
(
2012
).
14.
N. B.
Leite
,
A.
Aufderhorst-Roberts
,
M. S.
Palma
,
S. D.
Connell
,
J.
Ruggiero Neto
, and
P. A.
Beales
,
Biophys. J.
109
,
936
(
2015
).
15.
B.
Wang
,
L.
Zhang
,
S. C.
Bae
, and
S.
Granick
,
Proc. Natl. Acad. Sci.
105
,
18171
(
2008
).
16.
S. W.
Hell
and
J.
Wichmann
,
Opt. Lett.
19
,
780
(
1994
).
17.
V.
Westphal
,
S. O.
Rizzoli
,
M. A.
Lauterbach
,
D.
Kamin
,
R.
Jahn
, and
S. W.
Hell
,
Science
320
,
246
(
2008
).
18.
A.
Brown
and
N.
Hondow
,
Front. Nanosci.
5
,
95
(
2013
).
19.
Y.
Guo
,
E.
Terazzi
,
R.
Seemann
,
J. B.
Fleury
, and
V. A.
Baulin
,
Sci. Adv.
2
,
e1600261
(
2016
).
20.
C. M.
Beddoes
,
C. P.
Case
, and
W. H.
Briscoe
,
Adv. Colloid Interface Sci.
218
,
48
(
2015
).
21.
22.
A.
Verma
and
F.
Stellacci
,
Small
6
,
12
(
2010
).
23.
S.
Pogodin
,
M.
Werner
,
J.-U.
Sommer
, and
V. A.
Baulin
,
ACS Nano
6
,
10555
(
2012
).
24.
M.
Fuhrmans
,
G.
Marelli
,
Y. G.
Smirnova
, and
M.
Müller
,
Chem. Phys. Lipids
185
,
109
(
2015
).
25.
S. L.
Schmid
,
J. Cell Biol.
111
,
2307
(
1990
).
26.
R.
Ramachandran
,
Semin. Cell Dev. Biol.
22
,
10
(
2011
).
27.
W.-D.
Zhao
,
E.
Hamid
,
W.
Shin
,
P. J.
Wen
,
E. S.
Krystofiak
,
S. A.
Villarreal
,
H.-C.
Chiang
,
B.
Kachar
, and
L.-G.
Wu
,
Nature
534
,
548
(
2016
).
28.
W.
Sung
and
P. J.
Park
,
Phys. Rev. Lett.
77
,
783
(
1996
).
29.
G. F.
Schneider
and
C.
Dekker
,
Nat. Biotechnol.
30
,
326
(
2012
).
30.
Z.
Yang
,
Z. W.
Liu
,
R. P.
Allaker
,
P.
Reip
,
J.
Oxford
,
Z.
Ahmad
, and
G.
Ren
,
J. R. Soc. Interface
7
,
S411
(
2010
).
31.
S. L.
Bryant
,
J. E.
Eixenberger
,
S.
Rossland
,
H.
Apsley
,
C.
Hoffmann
,
N.
Shrestha
,
M.
McHugh
,
A.
Punnoose
, and
D.
Fologea
,
J. Nanobiotechnol.
15
,
90
(
2017
).
32.
L.
Yang
and
J. T.
Kindt
,
J. Phys. Chem. B
120
,
11740
(
2016
).
33.
A.
Tiwari
,
A.
Prince
,
M.
Arakha
,
S.
Jha
, and
M.
Saleem
,
Nanoscale
10
,
3369
(
2018
).
34.
K.
Wodzinska
,
A.
Blicher
, and
T.
Heimburg
,
Soft Matter
5
,
3319
(
2009
).
35.
H.
Rabbel
,
M.
Werner
, and
J.-U.
Sommer
,
Macromolecules
48
,
4724
(
2015
).
36.
C. L.
Bergstrom
,
P. A.
Beales
,
Y.
Lv
,
T. K.
Vanderlick
, and
J. T.
Groves
,
Proc. Natl. Acad. Sci.
110
,
6269
(
2013
).
37.
Y.
Schweitzer
,
T.
Shemesh
, and
M. M.
Kozlov
,
Biophys. J.
109
,
564
(
2015
).
38.
P. A.
Beales
,
B.
Ciani
, and
A. J.
Cleasby
,
Phys. Chem. Chem. Phys.
17
,
15489
(
2015
).
39.
J.
Agudo-Canalejo
and
R.
Lipowsky
,
Nano Lett.
15
,
7168
(
2015
).
40.
E.
Boucrot
,
A.
Pick
,
G.
Çamdere
,
N.
Liska
,
E.
Evergren
,
H. T.
McMahon
, and
M. M.
Kozlov
,
Cell
149
,
124
(
2012
).
41.
H.
Yuan
,
C.
Huang
,
J.
Li
,
G.
Lykotrafitis
, and
S.
Zhang
,
Phys. Rev. E
82
,
011905
(
2010
).
42.
K.
Yang
and
Y.
Ma
,
Soft Matter
8
,
606
(
2012
).
43.
R.
Vácha
,
F. J.
Martinez-Veracoechea
, and
D.
Frenkel
,
Nano Lett.
11
,
5391
(
2011
).
44.
C.
Huang
,
Y.
Zhang
,
H.
Yuan
,
H.
Gao
, and
S.
Zhang
,
Nano Lett.
13
,
4546
(
2013
).
45.
Y.
Kozlovsky
and
M. M.
Kozlov
,
Biophys. J.
85
,
85
(
2003
).
46.
G.
Zhang
and
M.
Müller
,
J. Chem. Phys.
147
,
064906
(
2017
).
47.
M. M.
Kozlov
,
H. T.
McMahon
, and
L. V.
Chernomordik
,
Trends Biochem. Sci.
35
,
699
(
2010
).
48.
J.
Dai
,
M. P.
Sheetz
,
X.
Wan
, and
C. E.
Morris
,
J. Neurosci.
18
,
6681
(
1998
).
49.
M.
Herant
,
V.
Heinrich
, and
M.
Dembo
,
J. Cell Sci.
118
,
1789
(
2005
).
50.
G.
Apodaca
,
Am. J. Physiol. Renal Physiol.
282
,
F179
(
2002
).
51.
M.
Deserno
and
T.
Bickel
,
Europhys. Lett.
62
,
767
(
2003
).
52.
M.
Deserno
and
W. M.
Gelbart
,
J. Phys. Chem. B
106
,
5543
(
2002
).
53.
A. J.
Kosmalska
 et al,
Nat. Commun.
6
,
7292
(
2015
).
54.
C.
Taupin
,
M.
Dvolaitzky
, and
C.
Sauterey
,
Biochemistry
14
,
4771
(
1975
).
55.
F.
Léonforte
and
M.
Müller
,
ACS Appl. Mater. Interfaces
7
,
12450
(
2015
).
56.
S.
Dasgupta
,
T.
Auth
, and
G.
Gompper
,
Nano Lett.
14
,
687
(
2014
).
57.
R. C.
Van Lehn
and
A.
Alexander-Katz
,
Soft Matter
7
,
11392
(
2011
).
58.
C.
Herold
,
P.
Schwille
, and
E. P.
Petrov
,
Phys. Rev. Lett.
104
,
148102
(
2010
).
59.
A. G.
Cherstvy
and
E. P.
Petrov
,
Phys. Chem. Chem. Phys.
16
,
2020
(
2014
).
60.
S.
Deshayes
,
T.
Plénat
,
G.
Aldrian-Herrada
,
G.
Divita
,
C.
Le Grimellec
, and
F.
Heitz
,
Biochemistry
43
,
7698
(
2004
).
61.
W. B.
Kauffman
,
T.
Fuselier
,
J.
He
, and
W. C.
Wimley
,
Trends Biochem. Sci.
40
,
749
(
2015
).
62.
H.-M.
Ding
and
Y.-Q.
Ma
,
Sci. Rep.
6
,
26783
(
2016
).
63.
D. W.
Fawcett
and
D. A.
Stagg
,
J. Submicrosc. Cytol.
18
,
11
(
1986
).
64.
M. K.
Shaw
,
L. G.
Tilney
, and
A. J.
Musoke
,
J. Cell Biol.
113
,
87
(
1991
).
65.
H.
Gao
,
W.
Shi
, and
L. B.
Freund
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
9469
(
2005
).
66.
A. H.
Bahrami
,
M.
Raatz
,
J.
Agudo-Canalejo
,
R.
Michel
,
E. M.
Curtis
,
C. K.
Hall
,
M.
Gradzielski
,
R.
Lipowsky
, and
T. R.
Weikl
,
Adv. Colloid Interface Sci.
208
,
214
(
2014
).
67.
C. P.
Brangwynne
,
P.
Tompa
, and
R. V.
Pappu
,
Nat. Phys.
11
,
899
(
2015
).
68.
M.
Rahman
,
S.
Laurent
,
N.
Tawil
,
L.
Yahia
, and
M.
Mahmoudi
,
Protein-Nanoparticle Interaction
(
Springer
,
Berlin/Heidelberg
,
2013
), pp.
21
44
.
69.
N.
Sakai
,
S.
Futaki
, and
S.
Matile
,
Soft Matter
2
,
636
(
2006
).
70.
S.
Hörner
,
S.
Knauer
,
C.
Uth
,
M.
Jöst
,
V.
Schmidts
,
H.
Frauendorf
,
C. M.
Thiele
,
O.
Avrutina
, and
H.
Kolmar
,
Angew. Chem. Int. Ed.
55
,
14842
(
2016
).
71.
R. J.
Ellis
,
Trends Biochem. Sci.
26
,
597
(
2001
).
72.
N.
Tokuriki
,
M.
Kinjo
,
S.
Negi
,
M.
Hoshino
,
Y.
Goto
,
I.
Urabe
, and
T.
Yomo
,
Protein Sci.
13
,
125
(
2004
).
73.
S. C.
Goodchild
,
T.
Sheynis
,
R.
Thompson
,
K. W.
Tipping
,
W.-F.
Xue
,
N. A.
Ranson
,
P. A.
Beales
,
E. W.
Hewitt
, and
S. E.
Radford
,
PLoS One
9
,
e104492
(
2014
).
74.
M.
Wu
,
X.
Wu
, and
P. D.
Camilli
,
Proc. Natl. Acad. Sci.
110
,
1339
(
2013
).
75.
Z.
Wu
,
M.
Su
,
C.
Tong
,
M.
Wu
, and
J.
Liu
,
Nat. Commun.
9
,
136
(
2018
).
76.
D.
Docter
,
D.
Westmeier
,
M.
Markiewicz
,
S.
Stolte
,
S. K.
Knauer
, and
R. H.
Stauber
,
Chem. Soc. Rev.
44
,
6094
(
2015
).
77.
S. R.
Saptarshi
,
A.
Duschl
, and
A. L.
Lopata
,
J. Nanobiotechnol.
11
,
26
(
2013
).
78.
M. P.
Monopoli
,
C.
Åberg
,
A.
Salvati
, and
K. A.
Dawson
,
Nat. Nanotechnol.
7
,
779
(
2012
).
79.
C. D.
Walkey
,
J. B.
Olsen
,
F.
Song
,
R.
Liu
,
H.
Guo
,
D. W. H.
Olsen
,
Y.
Cohen
,
A.
Emili
, and
W. C. W.
Chan
,
ACS Nano
8
,
2439
(
2014
).
80.
L.
Vroman
,
Bull. N. Y. Acad. Med.
64
,
352
(
1988
).
81.
S. M.
Slack
and
T. A.
Horbett
,
Proteins Interfaces II
, edited by
T. A.
Horbett
and
J. L.
Brash
(
American Chemical Society
,
Washington, DC
,
1995
), pp.
112
128
.
82.
E.
Casals
,
T.
Pfaller
,
A.
Duschl
,
G. J.
Oostingh
, and
V.
Puntes
,
ACS Nano
4
,
3623
(
2010
).
83.
C. D.
Walkey
and
W. C. W.
Chan
,
Chem. Soc. Rev.
41
,
2780
(
2012
).
84.
M.
Lundqvist
,
J.
Stigler
,
G.
Elia
,
I.
Lynch
,
T.
Cedervall
, and
K. A.
Dawson
,
Proc. Natl. Acad. Sci.
105
,
14265
(
2008
).
85.
86.
T.
Ishida
,
H.
Harashima
, and
H.
Kiwada
,
Biosci. Rep.
22
,
197
(
2002
).
87.
D.
Lombardo
,
P.
Calandra
,
D.
Barreca
,
S.
Magazù
, and
M.
Kiselev
,
Nanomaterials
6
,
125
(
2016
).
88.
S.
Schöttler
,
G.
Becker
,
S.
Winzen
,
T.
Steinbach
,
K.
Mohr
,
K.
Landfester
,
V.
Mailänder
, and
F. R.
Wurm
,
Nat. Nanotechnol.
11
,
372
(
2016
).
89.
M.
Vert
and
D.
Domurado
,
J. Biomater. Sci. Polym. Ed.
11
,
1307
(
2000
).
90.
A. D.
Dupuy
and
D. M.
Engelman
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
2848
(
2008
).
92.
E.
Sezgin
,
H.-J.
Kaiser
,
T.
Baumgart
,
P.
Schwille
,
K.
Simons
, and
I.
Levental
,
Nat. Protoc.
7
,
1042
(
2012
).
93.
H.
Pace
,
L.
Simonsson Nyström
,
A.
Gunnarsson
,
E.
Eck
,
C.
Monson
,
S.
Geschwindner
,
A.
Snijder
, and
F.
Höök
,
Anal. Chem.
87
,
9194
(
2015
).
94.
M. J.
Richards
,
C.-Y.
Hsia
,
R. R.
Singh
,
H.
Haider
,
J.
Kumpf
,
T.
Kawate
, and
S.
Daniel
,
Langmuir
32
,
2963
(
2016
).
95.
M. J.
Akhtar
,
M.
Ahamed
,
H. A.
Alhadlaq
,
S. A.
Alrokayan
, and
S.
Kumar
,
Clin. Chim. Acta
436
,
78
(
2014
).
96.
A. M.
Master
and
A.
Sen Gupta
,
Nanomedicine
7
,
1895
(
2012
).
97.
C.
Marchetti
 et al,
OncoTargets Ther.
7
,
1223
(
2014
).
98.
T. R.
Daniels
 et al,
Biochim. Biophys. Acta
1820
,
291
(
2012
).
You do not currently have access to this content.