The bacterial attachment to surfaces is the first step of biofilm formation. This attachment is governed by adhesion forces which act between the bacterium and the substrate. Such forces can be measured by single cell force spectroscopy, where a single bacterium is attached to a cantilever of a scanning force microscope, and force-distance curves are measured. For the productive sea-water bacterium Paracoccus seriniphilus, pH dependent measurements reveal the highest adhesion forces at pH 4. Adhesion forces measured at salinities between 0% and 4.5% NaCl are in general higher for higher salinity. However, there is an exception for 0.9% where a higher adhesion force was measured than expected. These results are in line with zeta potential measurements of the bacterium, which also show an exceptionally low zeta potential at 0.9% NaCl. In the absence of macromolecular interactions, the adhesion forces are thus governed by (unspecific) electrostatic interactions, which can be adjusted by pH and ionic strength. It is further shown that microstructures on the titanium surface increase the adhesion force. Growth medium reduces the interaction forces dramatically, most probably through macromolecular bridging.

1.
L.
Hall-Stoodley
,
J. W.
Costerton
, and
P.
Stoodley
,
Nat. Rev. Microbiol.
2
,
95
(
2004
).
2.
R.
Yongsunthon
,
V. G.
Fowler
,
B. H.
Lower
,
F. P.
Vellano
,
E.
Alexander
,
L. B.
Reller
,
G. R.
Corey
, and
S. K.
Lower
,
Langmuir
23
,
2289
(
2007
).
3.
I.
Francolini
and
G.
Donelli
,
FEMS Immunol. Med. Microbiol.
59
,
227
(
2010
).
4.
I. W.
Marjaka
,
K.
Miyanaga
,
K.
Hori
,
Y.
Tanji
, and
H.
Unno
,
Biochem. Eng. J.
15
,
69
(
2003
).
5.
Z. W.
Wang
and
S.
Chen
,
Appl. Microbiol. Biotechnol.
83
,
1
(
2009
).
6.
N.
Qureshi
,
B. A.
Annous
,
T. C.
Ezeji
,
P.
Karcher
, and
I. S.
Maddox
,
Microb. Cell Fact.
4
,
24
(
2005
).
7.
K.
Muffler
,
B.
Sana
,
J.
Mukherjee
, and
R.
Ulber
,
Marine Biotechnology
(
Springer
,
Berlin Heidelberg
,
2015
).
8.
B.
Rosche
,
X. Z.
Li
,
B.
Hauer
,
A.
Schmid
, and
K.
Buehler
,
Trends Biotechnol.
27
,
636
(
2009
).
9.
R.
Gross
,
K.
Lang
,
K.
Bühler
, and
A.
Schmid
,
Biotechnol. Bioeng.
105
,
705
(
2010
).
10.
P.
Stoodley
,
K.
Sauer
,
D. G.
Davies
, and
J. W.
Costerton
,
Annu. Rev. Microbiol.
56
,
187
(
2002
).
11.
H. J.
Busscher
,
W.
Norde
, and
H. C.
van der Mei
,
Appl. Environ. Microbiol.
74
,
2559
(
2008
).
12.
A. T.
Poortinga
,
R.
Bos
,
W.
Norde
, and
H. J.
Busscher
,
Surf. Sci. Rep.
47
,
1
(
2002
).
13.
14.
M.
Katsikogianni
and
Y. F.
Missirlis
,
Eur. Cells Mater.
8
,
37
(
2004
).
15.
K. C.
Marshall
,
R.
Stout
, and
R.
Mitchell
,
J. Gen. Microbiol.
68
,
337
(
1971
).
16.
F.
Gaboriaud
,
M. L.
Gee
,
R.
Strugnell
, and
F. L.
Duval
, Langmuir,
24
,
10988
(
2008
).
17.
H.
Ma
and
R. B.
Dickinson
,
J. Theor. Biol.
226
,
237
(
2004
).
18.
J.
Helenius
,
C.-P.
Heisenberg
,
H. E.
Gaub
, and
D. J.
Muller
,
J. Cell Sci.
121
,
1785
(
2008
).
19.
B.
Li
and
B. E.
Logan
,
Colloids Surf., B
36
,
81
(
2004
).
20.
Y.
Hong
and
D. G.
Brown
,
Langmuir
24
,
5003
(
2008
).
21.
X.
Sheng
,
Y. P.
Ting
, and
S. O.
Pehkonen
,
J. Colloid Interface Sci.
310
,
661
(
2007
).
22.
X.
Sheng
,
Y. P.
Ting
, and
S. O.
Pehkonen
,
J. Colloid Interface Sci.
321
,
256
(
2008
).
23.
S.
Tsuneda
,
H.
Aikawa
,
H.
Hayashi
, and
A.
Hirata
,
J. Colloid Interface Sci.
279
,
410
(
2004
).
24.
M. J.
McWhirter
,
A. J.
McQuillan
, and
P. J.
Bremer
,
Colloids Surf., B
26
,
365
(
2002
).
25.
C. R.
Bunt
,
D. S.
Jones
, and
I. G.
Tucker
,
Int. J. Pharm.
113
,
257
(
1995
).
26.
A.
Beaussart
,
S.
El-Kirat-Chatel
,
R. M. A.
Sullan
,
D.
Alsteens
,
P.
Herman
,
S.
Derclaye
, and
Y. F.
Dufrêne
,
Nat. Protoc.
9
,
1049
(
2014
).
27.
O.
Chaudhuri
,
S. H.
Parekh
,
W. A.
Lam
, and
D. A.
Fletcher
,
Nat. Methods
6
,
383
(
2009
).
28.
P. C. Y.
Lau
,
J. R.
Dutcher
,
T. J.
Beveridge
, and
J. S.
Lam
,
Biophys. J.
96
,
2935
(
2009
).
29.
J.
Friedrichs
,
K. R.
Legate
,
R.
Schubert
,
M.
Bharadwaj
,
C.
Werner
,
D. J.
Müller
, and
M.
Benoit
,
Methods
60
,
169
(
2013
).
30.
J.
Friedrichs
,
C.
Werner
, and
D. J.
Müller
,
Methods Mol. Biol.
1046
,
19
(
2010
).
31.
P. K.
Sharma
,
M. J.
Gibcus
,
H. C. V. D.
Mei
, and
H. J.
Busscher
,
J. Bacteriol.
71
,
3668
(
2005
).
32.
G.
Zeng
,
T.
Müller
, and
R. L.
Meyer
,
Langmuir
30
,
4019
(
2014
).
33.
A.
Taubenberger
,
D. A.
Cisneros
,
J.
Friedrichs
,
P.
Puech
,
D. J.
Muller
, and
C. M.
Franz
,
Mol. Biol. Cell
18
,
1634
(
2007
).
34.
M.
Benoit
and
H. E.
Gaub
,
Cells Tissues Organs
172
,
174
(
2002
).
35.
X.
Zhang
,
E.
Wojcikiewicz
, and
V. T.
Moy
,
Biophys. J.
83
,
2270
(
2002
).
36.
S. C.
Hsiao
,
A. K.
Crow
,
W. A.
Lam
,
C. R.
Bertozzi
,
D. A.
Fletcher
, and
M. B.
Francis
,
Angew. Chem.
47
,
8473
(
2008
).
37.
C.
Chien
and
W.
Tsai
,
ACS Appl. Mater. Interfaces
5
,
6975
(
2013
).
38.
H.
Lee
,
S. M.
Dellatore
,
W. M.
Miller
, and
P. B.
Messtersmith
,
Science
318
,
426
(
2007
).
39.
S.
Kang
and
M.
Elimelech
,
Langmuir
25
,
9656
(
2009
).
40.
M.
Laroche
,
R.
Pukall
, and
R.
Ulber
,
Chem. Ing. Tech.
75
,
146
(
2003
).
41.
R.
Pukall
,
M.
Laroche
,
R. M.
Kroppenstedt
,
P.
Schumann
,
E.
Stackebrandt
, and
R.
Ulber
,
Int. J. Syst. Evol. Microbiol.
53
,
443
(
2003
).
42.
J. L.
Hutter
and
J.
Bechhoefer
,
Rev. Sci. Instrum.
64
,
1868
(
1993
).
43.
E. P.
Wojcikiewicz
,
X.
Zhang
, and
V. T.
Moy
,
Biol. Proced. Online
6
,
1
(
2004
).
44.
M.
Bohley
,
R.
Merz
,
C.
Müller-Renno
,
I. G.
Reichenbach
,
N.
Davoudi
,
C.
Ziegler
,
M.
Kopnarski
, and
J. C.
Aurich
,
wt Werkstattstechnik online
104
,
586
(
2014
).
45.
M.
Fingerle
 et al,
Biointerphases
10
,
19007
(
2015
).
46.
C.
Müller
,
A.
Lüders
,
W.
Hoth-Hannig
,
M.
Hannig
, and
C.
Ziegler
,
Langmuir
26
,
4136
(
2010
).
47.
B. J.
Kirby
and
E. F.
Hasselbrink
,
Electrophoresis
25
,
187
(
2004
).
48.
K.
Cai
,
M.
Frant
,
J.
Bossert
,
G.
Hildebrand
,
K.
Liefeith
, and
K. D.
Jandt
,
Colloids Surf., B
50
,
1
(
2006
).
49.
S.
Roessler
,
R.
Zimmermann
,
D.
Scharnweber
,
C.
Werner
, and
H.
Worch
,
Colloids Surf., B
26
,
387
(
2002
).
50.
N.
Davoudi
,
I.
Raid
,
C.
Schlegel
,
C.
Müller-Renno
,
K.
Muffler
,
J.
Seewig
,
R.
Ulber
, and
C.
Ziegler
,
Biointerphases
10
,
019004
(
2015
).
51.
T. A.
Camesano
and
B. E.
Logan
,
Environ. Sci. Technol.
34
,
3354
(
2000
).
53.
T.
Luxbacher
,
The Zeta Potential for Solid Surface Analysis
(
Anton Paar
,
Austria
,
2014
.).
54.
L. C.
Xu
and
B. E.
Logan
,
Langmuir
22
,
4720
(
2006
).
55.
A.
Skovager
,
K.
Whitehead
,
H.
Siegumfeldt
,
H.
Ingmer
,
J.
Verran
, and
N.
Arneborg
,
Int. J. Food Microbiol.
157
,
174
(
2012
).
56.
Y. J.
Oh
,
N. R.
Lee
,
W.
Jo
,
W. K.
Jung
, and
J. S.
Lim
,
Ultramicroscopy
109
,
874
(
2009
).
57.
C.
Díaza
,
M. C.
Cortizo
,
P. L.
Schilardi
,
S. G. G.
de Saravia
, and
M. A. F. L.
de Mele
,
Mater. Res.
10
,
11
(
2007
).
58.
L.
Rizzello
,
B.
Sorce
,
S.
Sabella
,
G.
Vecchio
,
A.
Galeone
,
V.
Brunetti
,
R.
Cingolani
, and
P. P.
Pompa
,
ACS Nano
5
,
1865
(
2011
).
59.
R. D.
Boyd
,
J.
Verran
,
M. V.
Jones
, and
M.
Bhakoo
,
Langmuir
18
,
2343
(
2002
).
60.
C.
Schlegel
, “
Produktive Biofilme auf mikrostrukturierten Metalloberflächen
,” Ph.D. thesis (
University of Kaiserslautern
,
2015
).
You do not currently have access to this content.