Plant viruses which are self-assembled on a substrate are interesting building blocks in nanobiotechnology, in particular, for the creation of 2D ordered structures. In this article, the self-assembly of different genetically modified types of the tomato bushy stunt virus spin-coated on pristine silicon was investigated by scanning force and scanning electron microscopy. Amino acid side chains were integrated in the capsids of the viruses by extending the coat protein with different charged amino acid clusters (tetra-aspartate-hexa-histidine, hexa-aspartate, or tetra-arginine-tags). The influence of the resulting electrostatic forces based on virus–virus and virus–surface interactions on the formation of self-assembled monolayers will be presented and discussed in the context of differences in surface coverage for different pH values. It could be shown that the largest surface coverage can be achieved when there is an attraction between the whole virus and the surface and only a minor repulsion between the viruses at a given pH.

2.
M.
Uchida
 et al,
Adv. Mater.
19
,
1025
(
2007
).
3.
A.
Böker
,
J.
He
,
T.
Emrick
, and
T. P.
Russell
,
Soft Matter
3
,
1231
(
2007
).
4.
A. J.
Downard
,
E. S. Q.
Tan
, and
S. S. C.
Yu
,
New J. Chem.
30
,
1283
(
2006
).
5.
C. L.
Cheung
,
J. A.
Camarero
,
B. W.
Woods
,
T.
Lin
,
J. E.
Johnson
, and
J. J.
de Yoreo
,
J. Am. Chem. Soc.
125
,
6848
(
2003
).
6.
D.
Chimene
,
D. L.
Alge
, and
A. K.
Gaharwar
,
Adv. Mater.
27
,
7261
(
2015
).
7.
M.
Mahmoudi
,
S.
Sant
,
B.
Wang
,
S.
Laurent
, and
T.
Sen
,
Adv. Drug Delivery Rev.
63
,
24
(
2011
).
8.
R. A.
Petros
and
J. M.
DeSimone
,
Nat. Rev. Drug Discovery
9
,
615
(
2010
).
9.
M.-C.
Daniel
and
D.
Astruc
,
Chem. Rev.
104
,
293
(
2004
).
10.
P. V.
Kamat
,
J. Phys. Chem. Lett.
1
,
520
(
2010
).
11.
R.
Shenhar
,
T. B.
Norsten
, and
V. M.
Rotello
,
Adv. Mater.
17
,
657
(
2005
).
12.
I.
Yildiz
,
S.
Shukla
, and
N. F.
Steinmetz
,
Curr. Opin. Biotechnol.
22
,
901
(
2011
).
13.
N. F.
Steinmetz
and
D. J.
Evans
,
Org. Biomol. Chem.
5
,
2891
(
2007
).
14.
J.
Wang
,
L.
Wang
,
M.
Yang
,
Y.
Zhu
,
A.
Tomsia
, and
C.
Mao
,
Nano Lett.
14
,
6850
(
2014
).
15.
A. A. A.
Aljabali
,
J. E.
Barclay
,
G. P.
Lomonossoff
, and
D. J.
Evans
,
Nanoscale
2
,
2596
(
2010
).
16.
M.
Kobayashi
,
S.
Tomita
,
K.
Sawada
,
K.
Shiba
,
H.
Yanagi
,
I.
Yamashita
, and
Y.
Uraoka
,
Opt. Express
20
,
24856
(
2012
).
17.
S.
Fujikawa
and
T.
Kunitake
,
Langmuir
19
,
6545
(
2003
).
18.
C. E.
Flynn
,
S.-W.
Lee
,
B. R.
Peelle
, and
A. M.
Belcher
,
Acta Mater.
51
,
5867
(
2003
).
19.
Q.
Wang
,
T.
Lin
,
L.
Tang
,
J. E.
Johnson
, and
M. G.
Finn
,
Angew. Chem. Int. Ed.
41
,
459
(
2002
).
20.
M.
Young
,
D.
Willits
,
M.
Uchida
, and
T.
Douglas
,
Annu. Rev. Phytopathol.
46
,
361
(
2008
).
21.
D. J.
Evans
,
J. Mater. Chem.
18
,
3746
(
2008
).
22.
N. F.
Steinmetz
,
E.
Bock
,
R. P.
Richter
,
J. P.
Spatz
,
G. P.
Lomonossoff
, and
D. J.
Evans
,
Biomacromolecules
9
,
456
(
2008
).
23.
B.
Lorber
,
M.
Adrian
,
J.
Witz
,
M.
Erhardt
, and
J. R.
Harris
,
Micron
39
,
431
(
2008
).
24.
A.
Lüders
,
C.
Muller
,
K.
Boonrod
,
G.
Krczal
, and
C.
Ziegler
,
Colloids Surf., B
91
,
154
(
2012
).
25.
J. N.
Culver
,
A. D.
Brown
,
F.
Zang
,
M.
Gnerlich
,
K.
Gerasopoulos
, and
R.
Ghodssi
,
Virology
479–480
,
200
(
2015
).
27.
28.
29.
M. T.
Klem
,
D.
Willits
,
M.
Young
, and
T.
Douglas
,
J. Am. Chem. Soc.
125
,
10806
(
2003
).
30.
S. C.
Harrison
,
A. J.
Olson
,
C. E.
Schutt
,
F. K.
Winkler
, and
G.
Bricogne
,
Nature
276
,
368
(
1978
).
31.
J.
Burgyán
and
M.
Russo
,
Methods Mol. Biol.
81
,
225
(
1998
).
32.
33.
P. S.
Shah
,
M. B.
Sigman
,
C. A.
Stowell
,
K. T.
Lim
,
K. P.
Johnston
, and
B. A.
Korgel
,
Adv. Mater.
15
,
971
(
2003
).
34.
J.
Jenkins
,
M.
Flickinger
, and
O.
Velev
,
Materials
6
,
1803
(
2013
).
35.
36.
K.
Askar
,
J.
Wang
,
S.-Y.
Leo
,
C.
Kim
,
A. M.
Fenton
,
P.
Jiang
, and
B.
Jiang
,
Thin Solid Films
621
,
156
(
2017
).
37.
E. W.
Kuipers
,
C.
Laszlo
, and
W.
Wieldraaijer
,
Catal. Lett.
17
,
71
(
1993
).
38.
D.
Meyerhofer
,
J. Appl. Phys.
49
,
3993
(
1978
).
39.
V.
Rink
,
M.
Braun
,
K.
Boonrod
,
C.
Müller-Renno
,
G.
Krczal
, and
C.
Ziegler
,
Phys. Status Solidi C
13
,
163
(
2016
).
40.
D. T. W.
Toolan
,
S.
Fujii
,
S. J.
Ebbens
,
Y.
Nakamura
, and
J. R.
Howse
,
Soft Matter
10
,
8804
(
2014
).
41.
J.
Jenkins
,
M.
Flickinger
, and
O.
Velev
,
Coatings
3
,
26
(
2013
).
42.
D.
Galetzka
,
M.
Russo
,
L.
Rubino
, and
G.
Krczal
,
J. Plant Pathol.
82
,
151
(
2000
). Available at http://www.jstor.org/stable/41997995.
43.
D.
Gallitelli
,
R.
Hull
, and
R.
Koenig
,
J. Gen. Virol.
66
,
1523
(
1985
).
44.
T.
Solomon
,
J. Chem. Educ.
78
,
1691
(
2001
).
45.
Dr.
Rob Beynon
, “
buffercalculator
,” http://www.biomol.net/en/tools/buffercalculator.htm.
46.
C. B.
Prater
,
P. G.
Maivald
,
K. J.
Kjoller
, and
M. G.
Heaton
,
TappingMode Imaging Applications and Technology, AN04
(
Veeco Instruments Inc.
,
Santa Barbara
,
2004
), Rev A1.
47.
B. J.
Kirby
and
E. F.
Hasselbrink
, Jr.
,
Electrophoresis
25
,
187
(
2004
).
48.
A.
Tiselius
,
Trans. Faraday Soc.
33
,
524
(
1937
).
49.
S. S.
Hurtt
,
Phytopathology
79
,
661
(
1989
).
50.
M.
Braun
,
W.
Gebauer
,
G.
Krczal
,
Ch.
Ziegler
,
C.
Müller-Renno
, and
K.
Bonrood
, “A simple method to estimate the isoelectric point of modified Tomato bushy stunt virus (TBSV) particles,”
Electrophoresis
(published online).
51.
Bachem Holding AG
, “
bachem peptide calculator
,” http://www.bachem.com/service-support/peptide-calculator.
52.
J.
Zhang
,
Protein-Protein Interactions in Salt Solutions, Protein-Protein Interactions - Computational and Experimental Tools
, edited by
W.
Cai
(
InTech
,
2012
).
You do not currently have access to this content.