Determination of a limit of detection (LoD) for surface bound antibodies is crucial for the development and deployment of sensitive bioassays. The measurement of very low concentrations of surface bound antibodies is also important in the manufacturing of pharmaceutical products such as antibody-conjugated pharmaceuticals. Low concentrations are required to avoid an immune response from the target host. Enzyme-linked immunosorbent assay (ELISA), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to determine the LoD for the surface bound antibody (antiepidermal growth factor receptor antibody) on silicon substrates. Antibody solution concentrations between 10 μg/ml and 1 ng/ml and a control (antibody-free buffer solution) were employed, and the detection performance of each technique was compared. For this system, the ELISA LoD was 100 ng/ml and the XPS LoD was 1 μg/ml, corresponding to an estimated surface concentration of 49 ± 7 ng/cm2 using a 1 μg/ml solution. Due to the multivariate complexity of ToF-SIMS data, analysis was carried out using three different methods, peak ratio calculations, principal component analysis, and artificial neural network analysis. The use of multivariate analysis with this dataset offers an unbiased analytical approach based on the peaks selected from ToF-SIMS data. The results estimate a ToF-SIMS LoD between applied antibody concentrations of 10 and 100 ng/mL. For surface bound antibodies on a silicon substrate, the LoD is below an estimated surface concentration of 49 ng/cm2. The authors have determined the LoD for this system using ELISA, XPS, and ToF-SIMS with multivariate analyses, with ToF-SIMS offering an order of magnitude better detection over ELISA and 2 orders of magnitude better detection over XPS.

1.
M. S.
Wagner
,
T. A.
Horbett
, and
D. G.
Castner
,
Biomaterials
24
,
1897
(
2003
).
2.
M. S.
Wagner
,
S. L.
McArthur
,
M.
Shen
,
T. A.
Horbett
, and
D. G.
Castner
,
J. Biomater. Sci. Polym. Ed.
13
,
407
(
2002
).
3.
M. S.
Wagner
,
M.
Shen
,
T. A.
Horbett
, and
D. G.
Castner
,
J. Biomed. Mater. Res. A
64
,
1
(
2003
).
4.
M. V.
Beer
 et al,
Biointerphases
10
,
021007
(
2015
).
5.
S.
Ray
and
A. G.
Shard
,
Anal. Chem.
83
,
8659
(
2011
).
6.
S.
Ferrari
and
B. D.
Ratner
,
Surf. Interface Anal.
29
,
837
(
2000
).
7.
M.
Wilhelmi
,
C.
Müller
,
C.
Ziegler
, and
M.
Kopnarski
,
Anal. Bioanal. Chem.
400
,
697
(
2011
).
8.
C. C.
Dupont-Gillain
,
K. M.
Mc Evoy
,
M.
Henry
, and
P.
Bertrand
,
J. Mater. Sci.: Mater. Med.
21
,
955
(
2010
).
9.
R. N.
Foster
,
E. T.
Harrison
, and
D. G.
Castner
,
Langmuir
32
,
3207
(
2016
).
10.
D. J.
Menzies
,
M.
Jasieniak
,
H. J.
Griesser
,
J. S.
Forsythe
,
G.
Johnson
,
G. A.
McFarland
, and
B. W.
Muir
,
Surf. Sci.
606
,
1798
(
2012
).
11.
I.
Mihai
 et al,
Anal. Methods
6
,
7646
(
2014
).
12.
A. A.
Kolomenskii
,
P.
Gershon
, and
H.
Schuessler
,
Appl. Opt.
36
,
6539
(
1997
).
13.
P.
De Thier
,
J.
Bacharouche
,
J. F.
Duval
,
S.
Skali-Lami
, and
G.
Francius
,
Biochim. Biophys. Acta
1854
,
138
(
2015
).
14.
L.
Guicai
,
S.
Xiaoli
,
Y.
Ping
,
Z.
Ansha
, and
H.
Nan
,
Solid State Ionics
179
,
932
(
2008
).
15.
M.
Salim
,
B.
O'Sullivan
,
S. L.
McArthur
, and
P. C.
Wright
,
Lab Chip
7
,
64
(
2007
).
16.
N. G.
Welch
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Biointerphases
12
,
02D301
(
2017
).
17.
A. M.
Belu
,
D. J.
Graham
, and
D. G.
Castner
,
Biomaterials
24
,
3635
(
2003
).
18.
L. A.
McDonnell
and
R. M.
Heeren
,
Mass Spectrom. Rev.
26
,
606
(
2007
).
19.
J. C.
Vickerman
and
D.
Briggs
,
Tof-SIMS: Materials Analysis by Mass Spectrometry
(
IM Publications and SurfaceSpectra Ltd.
,
Manchester, UK
,
2013
).
20.
A. V.
Walker
,
Anal. Chem.
80
,
8865
(
2008
).
21.
C. M.
Mahoney
,
Mass Spectrom. Rev.
29
,
247
(
2010
).
22.
N.
Winograd
,
Anal. Chem.
77
,
142A
(
2005
).
23.
G.
Gillen
and
S.
Roberson
,
Rapid Commun. Mass Spectrom.
12
,
1303
(
1998
).
24.
Z.
Postawa
,
B.
Czerwinski
,
M.
Szewczyk
,
E. J.
Smiley
,
N.
Winograd
, and
B. J.
Garrison
,
J. Phys. Chem. B
108
,
7831
(
2004
).
25.
Y.
Kalegowda
and
S. L.
Harmer
,
Anal. Chim. Acta
759
,
21
(
2013
).
26.
O.
Sanni
,
M.
Wagner
,
D.
Briggs
,
D.
Castner
, and
J.
Vickerman
,
Surf. Interface Anal.
33
,
715
(
2002
).
27.
H.
Hutter
,
C.
Brunner
,
S.
Nikolov
,
C.
Mittermayer
, and
M.
Grasserbauer
,
Anal. Bioanal. Chem.
355
,
585
(
1996
).
28.
T.
Nilsson
,
T.
Lundgren
,
H.
Odelius
,
R.
Sillen
, and
J. G.
Noren
,
Artif. Intell. Med.
8
,
515
(
1996
).
29.
N. G.
Welch
,
R. M. T.
Madiona
,
T. B.
Payten
,
R. T.
Jones
,
N.
Brack
,
B. W.
Muir
, and
P. J.
Pigram
,
Langmuir
32
,
8717
(
2016
).
30.
N. G.
Welch
,
R. M. T.
Madiona
,
T. B.
Payten
,
C. D.
Easton
,
L.
Pontes-Braz
,
N.
Brack
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Acta Biomater.
55
,
172
(
2017
).
31.
N. G.
Welch
,
R. M. T.
Madiona
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
,
Langmuir
32
,
10824
(
2016
).
32.
N. G.
Welch
,
R. M. T.
Madiona
,
C. D.
Easton
,
J. A.
Scoble
,
R. T.
Jones
,
B. W.
Muir
, and
P. J.
Pigram
,
Biointerphases
11
,
041004
(
2016
).
33.
J. D.
Sato
,
T.
Kawamoto
,
A. D.
Le
,
J.
Mendelsohn
,
J.
Polikoff
, and
G. H.
Sato
,
Mol. Biol. Med.
1
,
511
(
1983
), available at http://www.ncbi.nlm.nih.gov/pubmed/6094961.
34.
F.
Walker
 et al,
Growth Factors
30
,
394
(
2012
).
35.
B. L.
Brizzard
,
R. G.
Chubet
, and
D. L.
Vizard
,
Biotechniques
16
,
730
(
1994
), available at https://www.ncbi.nlm.nih.gov/pubmed/8024796.
36.
E.
Kosobrodova
,
R. T.
Jones
,
A.
Kondyurin
,
W.
Chrzanowski
,
P. J.
Pigram
,
D. R.
McKenzie
, and
M. M.
Bilek
,
Acta Biomater.
19
,
128
(
2015
).
37.
N. T.
Samuel
,
M. S.
Wagner
,
K. D.
Dornfeld
, and
D. G.
Castner
,
Surf. Sci. Spectra
8
,
163
(
2001
).
38.
H.
Wang
,
D. G.
Castner
,
B. D.
Ratner
, and
S. Y.
Jiang
,
Langmuir
20
,
1877
(
2004
).
39.
D.
Ballabio
,
V.
Consonni
, and
R.
Todeschini
,
Chemometr Intell. Lab
98
,
115
(
2009
).
40.
D.
Ballabio
and
M.
Vasighi
,
Chemometr Intell. Lab
118
,
24
(
2012
).
41.
N. G.
Welch
,
J. A.
Scoble
,
C. D.
Easton
,
C. C.
Williams
,
B. J.
Bradford
,
L. K.
Mamedova
,
P. J.
Pigram
, and
B. W.
Muir
,
Anal. Chem.
88
,
10102
(
2016
).
42.
N. G.
Welch
,
C. D.
Easton
,
J. A.
Scoble
,
C. C.
Williams
,
P. J.
Pigram
, and
B. W.
Muir
,
J. Immunol. Methods
438
,
59
(
2016
).
43.
N. G.
Welch
,
C. J.
Lebot
,
C. D.
Easton
,
J. A.
Scoble
,
P. J.
Pigram
, and
B. W.
Muir
,
J. Immunol. Methods
446
,
70
(
2017
).
44.
S. L.
McArthur
,
G.
Mishra
, and
C. D.
Easton
,
Surface Analysis and Techniques in Biology
(
Springer International
,
Switzerland
,
2014
), pp.
9
36
.
45.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
21
,
165
(
1994
).
46.
H.
Shinotsuka
,
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
47
,
1132
(
2015
).
47.
Z.
Tan
,
Y.
Xia
,
M.
Zhao
, and
X.
Liu
,
Radiat. Environ. Biophys.
45
,
135
(
2006
).
48.
P. J.
Cumpson
,
Surf. Interface Anal.
31
,
23
(
2001
).
49.
See supplementary material at http://dx.doi.org/10.1116/1.4986377 for numerical values for ELISA, XPS, ToF-SIMS peak ratios and multivariate analysis results, XPS survey spectra and quantification, antibody surface coverage calculations, the amino acid peak list and corresponding PCA, full PC1 loadings of the extended peak list PCA and 4 × 4/8 × 8 UKNs.

Supplementary Material

You do not currently have access to this content.