Silane coupling agents are commonly employed to link an organic polymer to an inorganic substrate. One of the widely utilized coupling agents is 3-aminopropyltriethoxy silane (APTES). In this study, the authors investigated the ability of APTES to retain thermo-responsive poly(N-isopropylacrylamide) (pNIPAAm) on hydroxylated surfaces such as glass. For comparison purposes, the authors also evaluated the retention behaviors of (1) polystyrene, which likely has weaker van der Waals interactions and acid–base interactions (contributed by hydrogen-bonding) with APTES, on APTES as well as (2) pNIPAAm on two other silane coupling agents, which have similar structures to APTES, but exhibit less interaction with pNIPAAm. Under our processing conditions, the stronger interactions, particularly hydrogen bonding, between pNIPAAm and APTES were found to contribute substantially to the retention of pNIPAAm on the APTES modified surface, especially on the cured APTES layer when the interpenetration was minimal or nonexistent. On the noncured APTES layer, the formation of an APTES-pNIPAAm interpenetrating network resulted in the retention of thicker pNIPAAm films. As demonstrated by water contact angles [i.e., 7°–15° higher at 40 °C, the temperature above the lower critical solution temperature (LCST) of 32 °C for pNIPAAm, as compared to those at 25 °C] and cell attachment and detachment behaviors (i.e., attached/spread at 37 °C, above LCST; detached at 20 °C, below LCST), the retained pNIPAAm layer (6–15 nm), on both noncured and cured APTES, exhibited thermo-responsive behavior. The results in this study illustrate the simplicity of using the coupling/adhesion promoting ability of APTES to retain pNIPAAm films on hydroxylated substrates, which exhibit faster cell sheet detachment (≤30 min) as compared to pNIPAAm brushes (in hours) prepared using tedious and costly grafting approaches. The use of adhesion promoters to retain pNIPAAm provides an affordable alternative to current thermo-responsive supports for cell sheet engineering and stem cell therapy applications.

1.
P.
Shivapooja
,
L. K.
Ista
,
H. E.
Canavan
, and
G. P.
Lopez
,
Biointerphases
7
,
32
(
2012
).
2.
H.
Takahashi
,
M.
Nakayama
,
Y.
Yamato
, and
T.
Okano
,
Biomacromolecules
11
,
1991
(
2010
).
3.
X.
Sui
,
A.
Di Luca
,
M. K.
Gunnewiek
,
E. S.
Kooij
,
C. A.
Van Blitterswijk
,
L.
Moroni
,
M. K.
Hempenius
, and
G. J.
Vancso
,
Aust. J. Chem.
64
,
1261
(
2011
).
4.
Z.
Tang
and
T.
Okano
,
Regener. Biomater.
1
,
91
(
2014
).
5.
C.
Xue
,
N.
Yonet-tanyeri
,
N.
Brouette
,
M.
Sferrazza
,
P. V.
Braun
, and
D.
Leckband
,
Langmuir
27
,
8810
(
2011
).
6.
N. G.
Patel
,
J. P.
Cavicchia
,
G.
Zhang
, and
B.-M.
Zhang Newby
,
Acta Biomater.
8
,
2559
(
2012
).
7.
S. H.
Choi
and
B.-M.
Zhang Newby
,
Surf. Sci.
600
,
1391
(
2006
).
8.
A.
Alghunaim
,
E. T.
Brink
, and
B.-M.
Zhang Newby
,
Polymer
101
,
139
(
2016
).
9.
A.
Alghunaim
, “
Immobilization of poly(N-isopropylacrylamide) on hydroxylated surfaces using crosslinked organosilane networks
,” M.Sc. thesis (
The University of Akron
,
Akron, OH
,
2016
).
10.
A. T.
DiBenedetto
,
Mater. Sci. Eng., A
302
,
74
(
2001
).
11.
J. P.
Matinlinna
,
L. V. J.
Lassila
, and
P. K.
Vallittu
,
J. Dent.
34
,
740
(
2006
).
12.
G. L.
Witucki
,
J. Coat. Technol.
65
,
57
(
1993
).
13.
M. E.
Nash
,
D.
Healy
,
W. M.
Carroll
,
C.
Elvira
, and
Y. A.
Rochev
,
J. Mater. Chem.
22
,
19376
(
2012
).
14.
B.
Arkles
,
Chemtech
7
,
766
(
1977
).
15.
C. H.
Chiang
,
N. I.
Liu
, and
J. L.
Koenig
,
J. Colloid Interface Sci.
86
,
26
(
1982
).
16.
E. T.
Vandenberg
,
L.
Bertilsson
,
B.
Liedberg
,
K.
Uvdal
,
R.
Erlandsson
,
H.
Elwing
, and
I.
Lundström
,
J. Colloid Interface Sci.
147
,
103
(
1991
).
17.
M.
Zhu
,
M. Z.
Lerum
, and
W.
Chen
,
Langmuir
28
,
416
(
2012
).
18.
S.-H.
Choi
,
Y.
Cai
, and
B.-M.
Zhang Newby
,
Silanes and Other Coupling Agents
, edited by
K. L.
Mittal
(
CRC
,
Boca Raton, FL
,
2007
), Vol. 4, pp.
179
197
.
19.
E. J. R.
Sudhölter
,
R.
Huis
,
G. R.
Hays
, and
N. C. M.
Alma
,
J. Colloid Interface Sci.
103
,
554
(
1985
).
20.
J.
Kim
,
P.
Seidler
,
L. S.
Wan
, and
C.
Fill
,
J. Colloid Interface Sci.
329
,
114
(
2009
).
21.
A. C.
Miller
,
M. T.
Knowlton
, and
J. C.
Berg
,
J. Adhes. Sci. Technol.
14
,
1471
(
2000
).
22.
H.
Wang
and
B.-M.
Zhang Newby
,
Biointerphases
9
,
41006
(
2014
).
23.
R. F.
Fedors
,
Polym. Eng. Sci.
14
,
147
(
1974
).
24.
F.
Okada
,
Y.
Akiyama
,
J.
Kobayashi
,
H.
Ninomiya
,
H.
Kanazawa
,
M.
Yamato
, and
T.
Okano
,
J. Nanopart. Res.
17
,
148
(
2015
).
25.
M.
Chen
,
M.
Dong
,
R.
Havelund
,
V. R.
Regina
,
R. L.
Meyer
,
F.
Besenbacher
, and
P.
Kingshott
,
Chem. Mater.
22
,
4214
(
2010
).
26.
Q.
Yu
,
Y.
Zhang
,
H.
Chen
,
Z.
Wu
,
H.
Huang
, and
C.
Cheng
,
Colloids Surf., B
76
,
468
(
2010
).
27.
X.
Zeng
,
G.
Xu
,
Y.
Gao
, and
Y.
An
,
J. Phys. Chem.
115
,
450
(
2011
).
28.
S.-H.
Choi
and
B.-M.
Zhang Newby
,
Langmuir
19
,
1419
(
2003
).
29.
G.
Stephen Caravajal
,
D. E.
Leyden
,
G. R.
Quinting
, and
G. E.
Maciel
,
Anal. Chem.
60
,
1776
(
1988
).
30.
N. H.
Sung
,
A.
Kaul
,
I.
Chin
, and
C. S. P.
Sung
,
Polym. Eng. Sci.
22
,
637
(
1982
).
31.
J.
Gmehling
,
J.
Li
, and
M. A.
Shiller
,
Ind. Eng. Chem. Res.
32
,
178
(
1993
).
32.
J.
Gmehling
,
R.
Wittig
,
J.
Lohmann
, and
R.
Joh
,
Ind. Eng. Chem. Res.
41
,
1678
(
2002
).
33.
M.
Levitt
and
M. F.
Perutz
,
J. Mol. Biol.
201
,
751
(
1988
).
34.
M. F.
Perutz
,
Proc. R. Soc. London, A
345
,
105
(
1993
).
35.
S.
Suzuki
,
P. G.
Green
,
R. E.
Bumgarner
,
S.
Dasgupta
,
W. A.
Goddard
, and
G. A.
Blake
,
Science
257
,
942
(
1992
).
36.
R. J.
Good
,
N. R.
Srivatsa
,
M.
Islam
,
H.
Huang
, and
C. J.
van Oss
,
J. Adhes. Sci. Technol.
4
,
1
(
1990
).
37.
C. J.
van Oss
,
M. K.
Chaudhury
, and
R. J.
Good
,
Chem. Rev.
88
,
927
(
1988
).
38.
C. J.
van Oss
,
J. Mol. Recognit.
16
,
177
(
2003
).
39.
C. J.
van Oss
,
M. J.
Chaudhury
, and
R. J.
Good
,
Adv. Colloid Interface Sci.
28
,
35
(
1987
).
40.
Surface Design: Applications in Bioscience and Nanotechnology
, edited by
R.
Forch
,
H.
Schonherr
, and
A. T.
Jenkins
(
Wiley
,
Weinheim, Germany
,
2009
), pp.
493
496
.
41.
J. B.
Gilbert
,
M. F.
Rubner
, and
R. E.
Cohen
,
PNAS
110
,
6651
(
2013
).
42.
G.
Beamson
,
D. T.
Clark
,
J.
Kendrick
, and
D.
Briggs
,
J Electron Spectrosc. Relat. Phenom.
57
,
79
(
1991
).
43.
M. M.
Browne
,
G. V.
Lubarsky
,
M. R.
Davidson
, and
R. H.
Bradley
,
Surf. Sci.
553
,
155
(
2004
).
44.
S.
Swaraj
,
U.
Oran
,
A.
Lippitz
,
R.-D.
Schulze
,
J. F.
Friedrich
, and
W. E. S.
Unger
,
Plasma Processes Polym.
1
,
134
(
2004
).
45.
See supplementary material at http://dx.doi.org/10.1116/1.4982248 for details on estimating the free energy of mixing using the modified UNIFAC model as well as the retention of pNIPAAm and PS on SiOx and solution deposited APTES layers.

Supplementary Material

You do not currently have access to this content.