Zinc oxide (ZnO) films were prepared on aluminum substrate by a hydrothermal method to investigate the effect of their surface characteristics, including morphology and hydrophobicity, on the corresponding antibiofilm performance. The surface characteristics of the prepared ZnO films were examined by a comprehensive range of methodologies, suggesting that films of distinctive surface morphologies were successfully formed. Subsequently, their antibiofilm activities, using Shewanella putrefaciens as a model bacterium, were assessed. Surface measurements confirmed that the ZnO films equipped with a nanoscopic needlelike surface feature are more hydrophobic than those possessing densely packed microflakes. The reduced number of live cells and presence of biofilm, confirmed by optical and electron microscopy results, suggest that the former films possess an excellent antibiofilm performance. It is believed that the engineered nanoscopic needle feature might penetrate the cell membrane when they are in contact, allowing the effective substance of ZnO antibacterial ingredients to diffuse into the embedded bacteria. Furthermore, such surface characteristics might perturb the integrity of the cell membrane causing the intracellular substance is leaked from the cells. As such, the combinatorial effects of nanoscopic feature resulted in an inhibited growth of S. putrefaciens biofilm on ZnO film.

1.
T. R.
Garrett
,
M.
Bhakoo
, and
Z.
Zhang
,
Prog. Nat. Sci.
18
,
1049
(
2008
).
2.
S.
Srey
,
I. K.
Jahid
, and
S.-D.
Ha
,
Food Control
31
,
572
(
2013
).
3.
C.
Ganesh Kumar
and
S. K.
Anand
,
Int. J. Food Microbiol.
42
,
9
(
1998
).
4.
X.
Shi
and
X.
Zhu
,
Trends Food Sci. Technol.
20
,
407
(
2009
).
5.
R.
Van Houdt
and
C. W.
Michiels
,
Res. Microbiol.
156
,
626
(
2005
).
6.
M.
Hjelm
,
L. R.
Hilbert
,
P.
Møller
, and
L.
Gram
,
J. Appl. Microbiol.
92
,
903
(
2002
).
7.
W. M.
Dunne
,
Clin. Microbiol. Rev.
15
,
155
(
2002
).
8.
R.
Van Houdt
and
C. W.
Michiels
,
J. Appl. Microbiol.
109
,
1117
(
2010
).
9.
A.
Asatekin
,
A.
Menniti
,
S.
Kang
,
M.
Elimelech
,
E.
Morgenroth
, and
A. M.
Mayes
,
J. Membr. Sci.
285
,
81
(
2006
).
10.
A.
Akthakul
,
R. F.
Salinaro
, and
A. M.
Mayes
,
Macromolecules
37
,
7663
(
2004
).
11.
J.
Pasquet
,
Y.
Chevalier
,
J.
Pelletier
,
E.
Couval
,
D.
Bouvier
, and
M.-A.
Bolzinger
,
Colloids Surf., A
457
,
263
(
2014
).
12.
Y.
Xie
,
Y.
He
,
P. L.
Irwin
,
T.
Jin
, and
X.
Shi
,
Appl. Environ. Microbiol.
77
,
2325
(
2011
).
13.
L.
Zhang
,
Y.
Jiang
,
Y.
Ding
,
N.
Daskalakis
,
L.
Jeuken
,
M.
Povey
,
A. J.
O'Neill
, and
D. W.
York
,
J. Nanopart. Res.
12
,
1625
(
2010
).
14.
N.
Talebian
,
S. M.
Amininezhad
, and
M.
Doudi
,
J. Photochem. Photobiol., B
120
,
66
(
2013
).
15.
A.
Vikram Singh
 et al.,
Plos One
6
,
e25029
(
2011
).
16.
L. E.
Fisher
,
Y.
Yang
,
M. F.
Yuen
,
W.
Zhang
,
A. H.
Nobbs
, and
B.
Su
,
Biointerphases
11
,
011014
(
2016
).
17.
G.
Feng
,
Y.
Cheng
,
S. Y.
Wang
,
L. C.
Hsu
,
Y.
Feliz
,
D. A.
Borca-Tasciuc
,
R. W.
Worobo
, and
C. I.
Moraru
,
Biofouling
30
,
1253
(
2014
).
18.
X.
Zhang
,
L.
Wang
, and
E.
Levänen
,
RSC Adv.
3
,
12003
(
2013
).
19.
J.-P.
Mosnier
,
R. J.
O’Haire
,
E.
McGlynn
,
M. O.
Henry
,
S. J.
McDonnell
,
M. A.
Boyle
, and
K. G.
McGuigan
,
Sci. Technol. Adv. Mater.
10
,
045003
(
2009
).
20.
T.-J.
Whang
,
M.-T.
Hsieh
,
J.-M.
Tsai
, and
S.-J.
Lee
,
Appl. Surf. Sci.
257
,
9539
(
2011
).
21.
L.
Cui
,
G.-G.
Wang
,
H.-Y.
Zhang
,
R.
Sun
,
X.-P.
Kuang
, and
J.-C.
Han
,
Ceram. Int.
39
,
3261
(
2013
).
22.
J.-J.
Dong
,
C.-Y.
Zhen
,
H.-Y.
Hao
,
J.
Xing
,
Z.-L.
Zhang
,
Z.-Y.
Zheng
, and
X.-W.
Zhang
,
Nanoscale Res. Lett.
8
,
1
(
2013
).
23.
A.-Q.
Zhang
,
L.
Zhang
,
L.
Sui
,
D.-J.
Qian
, and
M.
Chen
,
Cryst. Res. Technol.
48
,
947
(
2013
).
24.
E. P.
Ivanova
 et al.,
Nat. Commun.
4
,
2838
(
2013
).
25.
S.
Tabrez Khan
,
M.
Ahamed
,
A.
Al-Khedhairy
, and
J.
Musarrat
,
Mater. Lett.
97
,
67
(
2013
).
26.
R. K.
Dutta
,
B. P.
Nenavathu
,
M. K.
Gangishetty
, and
A. V.
Reddy
,
Colloids Surf., B
94
,
143
(
2012
).
27.
T.
Sun
,
C.-L.
Wu
,
H.
Hao
,
Y.
Dai
, and
J.-R.
Li
,
Food Hydrocolloids
54
,
130
(
2016
).
28.
S.-B.
Mao
,
D.-Q.
Li
,
F.-Z.
Zhang
,
D.
Evans
, and
X.
Duan
,
Chin. J. Inorg. Chem.
20
,
596
(
2004
).
29.
T.
Sun
,
H.
Hao
,
W. T.
Hao
,
S. M.
Yi
,
X. P.
Li
, and
J. R.
Li
,
Nanoscale Res. Lett.
9
,
98
(
2014
).
30.
S.-P.
Wang
,
Principle and Technology of Modern Instrument Analysis
(
Science
,
Beijing
,
2016
).
31.
H.
Lu
,
S.
Wang
,
L.
Zhao
,
J.
Li
,
B.
Dong
, and
Z.
Xu
,
J. Mater. Chem.
21
,
4228
(
2011
).
32.
G.-H.
Shen
and
F. C.-N.
Hong
,
Thin Solid Films
570
,
363
(
2014
).
33.
A. K.
Zak
,
R.
Razali
,
W. H.
Majid
, and
M.
Darroudi
,
Int. J. Nanomed.
6
,
1399
(
2011
).
34.
E. C. R.
Bonsaglia
,
N. C. C.
Silva
,
A.
Fernades Júnior
,
J. P.
Araújo Júnior
,
M. H.
Tsunemi
, and
V. L. M.
Rall
,
Food Control
35
,
386
(
2014
).
35.
36.
T. P.
Schaer
,
S.
Stewart
,
B. B.
Hsu
, and
A. M.
Klibanov
,
Biomaterials
33
,
1245
(
2012
).
37.
V.
Baeyer
and
H.
Christian
,
Sciences
40
,
12
(
2000
).
40.
Y.
Jiang
,
L.
Zhang
,
D.
Wen
, and
Y.
Ding
,
Mater. Sci. Eng., C
69
,
1361
(
2016
).
41.
See supplementary material at http://dx.doi.org/10.1116/1.4976003 for the results of AFM of the samples. It is related to the roughness of the samples.

Supplementary Material

You do not currently have access to this content.