The integration of biomolecules such as proteins, carbohydrates, or enzymes into functional materials, whether through physical or chemical coupling, remains a critical processing step in the fabrication of engineered biosensors or tissue scaffolds, where anisotropy and composition can directly impact material function and host integration. A means to achieve these features is through the selective patterning of biomolecules, which is used to recruit and direct cell growth in vitro. The authors describe the design of protein-based materials using inkjet printing and discuss how fluid physical properties of the formulated inks influence pattern formation and material performance. When interfaced with carbon nanotubes, the biohybrid films retain their chemical signature but with enhanced structural stability and electrical conductivity over time. These structures also support the adhesion and proliferation of human dermal fibroblasts. Together, these properties demonstrate the utility of printed biohybrid films as materials that can conceivably be used to recapitulate or enhance biological function for tissue engineering applications.

1.
S. G.
Ricoult
,
A. S.
Nezhad
,
M.
Knapp-Mohammady
,
T. E.
Kennedy
, and
D.
Juncker
,
Langmuir
30
,
12002
(
2014
).
2.
L. F.
Deravi
,
H. M.
Golecki
, and
K. K.
Parker
,
J. Chem. Biol. Interfaces
1
,
25
(
2013
).
3.
K.
Shen
,
J.
Qi
, and
L. C.
Kam
,
J. Visualized Exp.
22
,
1065
(
2008
).
4.
K. H.
Benam
 et al,
Annu. Rev. Pathol.
10
,
195
(
2015
).
5.
D.
Huh
,
H. J.
Kim
,
J. P.
Fraser
,
D. E.
Shea
,
M.
Khan
,
A.
Bahinski
,
G. A.
Hamilton
, and
D. E.
Ingber
,
Nat. Protoc.
8
,
2135
(
2013
).
6.
J. T.
Delaney
, Jr.
,
P. J.
Smith
, and
U. S.
Schubert
,
Soft Matter
5
,
4866
(
2009
).
7.
J. D.
Swartz
,
L. F.
Deravi
, and
D. W.
Wright
,
Adv. Funct. Mater.
20
,
1488
(
2010
).
8.
F.
Pati
,
J.
Jang
,
D. H.
Ha
,
S.
Won Kim
,
J. W.
Rhie
,
J. H.
Shim
,
D. H.
Kim
, and
D. W.
Cho
,
Nat. Commun.
5
,
3935
(
2014
).
9.
A.
Ping Zhang
,
X.
Qu
,
P.
Soman
,
K. C.
Hribar
,
J. W.
Lee
,
S.
Chen
, and
S.
He
,
Adv. Mater.
24
,
4266
(
2012
).
10.
X.-H.
Qin
,
A.
Ovsianikov
,
J.
Stampfl
, and
R.
Liska
,
BioNanoMaterial
15
,
49
(
2014
).
11.
B.
Derby
,
J. Mater. Chem.
18
,
5717
(
2008
).
13.
R.
Singhvi
,
A.
Kumar
,
G. P.
Lopez
,
G. N.
Stephanopoulos
,
D. I. C.
Wang
,
G. M.
Whitesides
, and
D. E.
Ingber
,
Science
264
,
696
(
1994
).
14.
K.
Uto
,
S. S.
Mano
,
T.
Aoyagi
, and
M.
Ebara
,
ACS Biomater. Sci. Eng.
2
,
446
(
2016
).
15.
A. L.
Rutz
,
K. E.
Hyland
,
A. E.
Jakus
,
W. R.
Burghardt
, and
R. N.
Shah
,
Adv. Mater.
27
,
1607
(
2015
).
16.
A.
Agarwal
,
Y.
Farouz
,
A. P.
Nesmith
,
L. F.
Deravi
,
M. L.
McCain
, and
K. K.
Parker
,
Adv. Funct. Mater.
23
,
3738
(
2013
).
17.
A.
Grosberg
,
A. P.
Nesmith
,
J. A.
Goss
,
M. D.
Brigham
,
M. L.
McCain
, and
K. K.
Parker
,
J. Pharmacol. Toxicol. Methods
65
,
126
(
2012
).
18.
J.
Sumerel
,
J.
Lewis
,
A.
Doraiswamy
,
L. F.
Deravi
,
S. L.
Sewell
,
A. E.
Gerdon
,
D. W.
Wright
, and
R. J.
Narayan
,
Biotechnol. J.
9
,
976
(
2006
).
19.
J. A.
Lewis
,
Adv. Funct. Mater.
16
,
2193
(
2006
).
20.
D. B.
Kolesky
,
R. L.
Truby
,
A.
Sydney Gladman
,
T. A.
Busbee
,
K. A.
Homan
, and
J. A.
Lewis
,
Adv. Mater.
26
,
3124
(
2014
).
21.
J.
Malda
,
J.
Visser
,
F. P.
Melchels
,
T.
Jüngst
,
W. E.
Hennink
,
W. J. A.
Dhert
,
J.
Groll
, and
D. W.
Hutmacher
,
Adv. Mater.
25
,
5011
(
2013
).
22.
A.
Sydney Gladman
,
E. A.
Matsumoto
,
R. G.
Nuzzo
,
L.
Mahadevan
, and
J. A.
Lewis
,
Nat. Mater.
15
,
413
(
2016
).
23.
M. M.
Stanton
,
J.
Samitier
, and
S.
Sanchez
,
Lab Chip
15
,
3111
(
2015
).
24.
C.
Colosi
,
S. R.
Shin
,
V.
Manoharan
,
S.
Massa
,
M.
Costantini
,
A.
Barbetta
,
M. R.
Dokmeci
,
M.
Dentini
, and
A.
Khademhosseini
,
Adv. Mater.
28
,
677
(
2016
).
25.
B. G.
Compton
and
J. A.
Lewis
,
Adv. Mater.
26
,
5930
(
2014
).
26.
H.
Shin
,
B. D.
Olsen
, and
A.
Khademhosseini
,
Biomaterials
33
,
3143
(
2012
).
27.
S. V.
Murphy
and
A.
Atala
,
Nat. Biotechnol.
32
,
773
(
2014
).
28.
E. D.
Kozin
,
N. L.
Black
,
J. T.
Cheng
,
M. J.
Cotler
,
M. J.
McKenna
,
D. J.
Lee
,
J. A.
Lewis
,
J. J.
Rosowski
, and
A. K.
Remenschneider
,
Hear. Res.
340
,
191
(
2016
).
29.
J. M.
McCracken
,
A.
Badea
,
M. E.
Kandel
,
A. S.
Gladman
,
D. J.
Wetzel
,
G.
Popescu
,
J. A.
Lewis
, and
R. G.
Nuzzo
,
Adv. Healthcare Mater.
5
,
1025
(
2016
).
30.
L. F.
Deravi
,
J. L.
Sumerel
,
A. E.
Gerdon
,
D. E.
Cliffel
, and
D. W.
Wright
,
Appl. Phys. Lett.
91
,
113114
(
2007
).
31.
K.
Yokoyama
,
N.
Nio
, and
Y.
Kikuchi
,
Appl. Microbiol. Biotechnol.
64
,
447
(
2004
).
32.
P.
Zhou
,
Y.
Deng
,
B.
Lyu
,
R.
Zhang
,
H.
Zhang
,
H.
Ma
,
Y.
Lyu
, and
S.
Wei
,
Plos One
9
,
e113087
(
2014
).
33.
Y.
Peng
,
V.
Glattauer
,
J. A.
Werkmeister
, and
J. A. M.
Ramshaw
,
J. Cosmet. Sci.
26
,
313
(
2004
).
34.
M. L.
McCain
,
A.
Agarwal
,
H. W.
Nesmith
,
A. P.
Nesmith
, and
K. K.
Parker
,
Biomaterials
35
,
5462
(
2014
).
35.
N.
Reiss
,
C.
Ainsley
, and
B.
Derby
,
J. Appl. Phys.
97
,
094903
(
2005
).
36.
H.
Dong
and
W. W.
Carr
,
Phys. Fluids
18
,
072102
(
2006
).
37.
L. F.
Deravi
,
J. L.
Sumerel
,
S. L.
Sewell
, and
D. W.
Wright
,
Small
4
,
2127
(
2008
).
38.
D.
Jang
,
D.
Kim
, and
J.
Moon
,
Langmuir
25
,
2629
(
2009
).
39.
B.
Derby
and
N.
Reis
,
MRS Bull.
28
,
815
(
2003
).
40.
H.
Lee
,
S. M.
Dellatore
,
W. M.
Miller
, and
P. B.
Messersmith
,
Science
318
,
426
(
2007
).
41.
H.
Lee
,
J.
Rho
, and
P. B.
Messersmith
,
Adv. Mater.
21
,
431
(
2009
).
42.
T.
Tungkavet
,
N.
Seetapan
,
D.
Pattavarakorn
, and
A.
Sirivat
,
Mater. Sci. Eng., C
46
,
281
(
2015
).
43.
S. R.
Shin
 et al,
ACS Nano
7
,
2369
(
2013
).
44.
A. A.
Adewunmi
,
S.
Ismail
, and
A. S.
Sultan
,
J. Inorg. Organomet. Polym. Mater.
26
,
717
(
2016
).
45.
S.
Haider
,
S. Y.
Park
,
K.
Saeed
, and
B. L.
Farmer
,
Sens. Actuators, B
124
,
517
(
2007
).
46.
H.
Li
,
D. Q.
Wang
,
H. L.
Chen
,
B. L.
Liu
, and
L. Z.
Gao
,
Macromol. Biosci.
3
,
720
(
2003
).
47.
A.
Barth
,
Biochim. Biophys. Acta, Bioenerg.
1767
,
1073
(
2007
).
48.
T.
Nguyen
and
B.
Lee
,
J. Biomed. Sci. Eng.
3
,
1117
(
2010
).
49.
J.
Poppe
,
Gelatin
(
Springer Science + Business Media
,
Dordrecht
,
1992
).
50.
See supplementary material at http://dx.doi.org/10.1116/1.4966164 for data associated with ink optimization, viscosity, multi-layer printing, cell growth, and the fluid physical properties of the inks.

Supplementary Material

You do not currently have access to this content.