Bacterial colonies that reside on a surface, known as biofilms, are intrinsically impenetrable to traditional antibiotics, ultimately driving research toward an alternative therapeutic approach. Nitric oxide (NO) has gained attention for its biologically beneficial properties, particularly centered around its antibacterial capabilities. NO donors that can release the molecule under physiological conditions (such as S-nitrosothiols) can be utilized in clinical settings to combat bacterial biofilm infections. Herein the authors describe determining a critical concentration of NO necessary to cause >90% reduction of a Pseudomonas aeruginosa biofilm grown on medical grade polyurethane films. The biofilm was grown under optimal culture conditions [in nutrient broth media (NBM) at 37 °C] for 24 h before the addition of the NO donor S-nitrosoglutathione (GSNO) in NBM for an additional 24 h. The cellular viability of the biofilm after the challenge period was tested using varying concentrations of NO to determine the critical amount necessary to cause at least a 90% reduction in bacterial biofilm viability. The critical GSNO concentration was found to be 10 mM, which corresponds to 2.73 mM NO. Time kill experiments were performed on the 24 h biofilm using the critical amount of NO at 4, 8, 12, and 16 h and it was determined that the 90% biofilm viability reduction occurred at 12 h and was sustained for the entire 24 h challenge period. This critical concentration was subsequently tested for total NO release via a nitric oxide analyzer. The total amount of NO released over the 12 h challenge period was found to be 5.97 ± 0.66 × 10−6 mol NO, which corresponds to 1.49 ± 0.17 μmol NO/ml NBM. This is the first identification of the critical NO concentration needed to elicit this biological response on a medically relevant polymer.

1.
R. D.
Scott
,
The Direct Medical Costs of Healthcare-Associated Infections in U.S. Hospitals and the Benefits of Prevention
(
Centers for Disease Control and Prevention
,
Atlanta
,
2009
).
2.
N.
Barraud
,
M. V.
Storey
,
Z. P.
Moore
,
J. S.
Webb
,
S. A.
Rice
, and
S.
Kjelleberg
,
Microb. Biotechnol.
2
,
370
(
2009
).
3.
M.
Cloutier
,
D.
Mantovani
, and
F.
Rosei
,
Trends Biotechnol.
33
,
637
(
2015
).
4.
W.
Fu
,
T.
Forster
,
O.
Mayer
,
J. J.
Curtin
,
S. M.
Lehman
, and
R. D.
Donlan
,
Antimicrob. Agents Chemother.
54
,
397
(
2010
).
5.
A.
Colleta
,
J.
Wu
,
Y.
Wo
,
M.
Kappler
,
H.
Chen
,
C.
Xi
, and
M. E.
Meyerhoff
,
ACS Biomater. Sci. Eng.
1
,
416
(
2015
).
6.
L.
Hall-Stoodley
,
J. W.
Costerton
, and
P.
Stoodley
,
Nat. Rev. Microbiol.
2
,
95
(
2004
).
7.
E.
Hernandez-Jimenez
 et al,
Biochem. Biophys. Res. Commun.
441
,
947
(
2013
).
8.
Y.
Irie
,
B. R.
Borlee
,
J. R.
O'Connor
,
P. J.
Hill
,
C. S.
Harwood
,
D. J.
Wozniak
, and
M. R.
Parsek
,
PNAS
109
,
20632
(
2012
).
9.
M. E.
Falagas
and
P.
Kopterides
,
J. Hosp. Infect.
64
,
7
(
2006
).
10.
G. D.
Wright
,
Nat. Rev. Microb.
5
,
175
(
2007
).
11.
O.
Bazaka
and
K.
Bazaka
,
Antibacterial Surfaces: Cytotoxic Effects and Biocompatibility of Antimicrobial Surfaces
(
Springer International
,
Cham, Switzerland
,
2005
).
12.
H. T. T.
Duong
,
N. N. M.
Adnan
,
N.
Barraud
,
J. S.
Basuki
,
S. K.
Kutty
,
K.
Jung
,
N.
Kumar
,
T. P.
Davis
, and
C.
Boyer
,
J. Mater. Chem. B
2
,
5003
(
2014
).
13.
C.
Vreuls
,
G.
Zocchi
,
B.
Thierry
,
G.
Garitte
,
S. S.
Griesser
,
C.
Archambeau
,
C.
Van de Weerdt
,
J.
Martial
, and
H.
Griesser
,
J. Mater. Chem.
20
,
8092
(
2010
).
14.
K.
Bazaka
 et al,
Biomacromolecules
11
,
2016
(
2010
).
15.
K.
Chaloupka
,
Y.
Malam
, and
A. M.
Seifalian
,
Trends Biotechnol.
28
,
580
(
2010
).
16.
T.
Shirai
,
T.
Shimizu
,
K.
Ohtani
,
Y.
Zen
,
M.
Takaya
, and
H.
Tsuchiya
,
Acta Biomater.
7
,
1928
(
2011
).
17.
A. M.
Carmona-Ribeiro
and
L.
Dias de Melo Carrasco
,
Int. J. Mol. Sci.
14
,
9906
(
2013
).
18.
Y.
Lu
,
D. L.
Slomberg
, and
M. H.
Schoenfisch
,
Biomaterials
35
,
1716
(
2014
).
19.
M.
Chatterjee
,
C. P.
Anju
,
L.
Biswas
,
V. A.
Kumar
, and
C. G.
Mohan
,
Int. J. Med. Microb.
306
,
48
(
2016
).
20.
B. J.
Privett
,
A. D.
Broadnax
,
S. J.
Bauman
,
D. A.
Riccio
, and
M. H.
Schoenfisch
,
Nitric Oxide
26
,
169
(
2012
).
21.
N.
Barraud
,
M. J.
Kelso
,
S. A.
Rice
, and
S.
Kjelleberg
,
Curr. Pharm. Des.
21
,
31
(
2015
).
22.
F. C.
Fang
,
J. Clin. Invest.
99
,
2818
(
1997
).
23.
M. L.
Jones
,
J. G.
Ganopolsky
,
A.
Labbe
, and
S.
Prakash
,
Appl. Microb. Biotechnol.
87
,
509
(
2010
).
24.
E. M.
Hetrick
,
J. H.
Shin
,
N. A.
Stasko
,
C. B.
Johnson
,
D. A.
Wespe
,
E.
Holmuhamedov
, and
M. H.
Schoenfisch
,
ACS Nano
2
,
235
(
2008
).
25.
B.
Sun
,
D. L.
Slomberg
,
S. L.
Chudasama
,
Y.
Lu
, and
M. H.
Schoenfisch
,
Biomacromolecules
13
,
3343
(
2012
).
26.
27.
C.
Von Eiff
,
B.
Jansen
,
W.
Kohnen
, and
K.
Becker
,
Drugs
65
,
179
(
2005
).
28.
P.
Stoodley
,
K.
Sauer
,
D. G.
Davies
, and
J. W.
Costerton
,
Annu. Rev. Microbiol.
56
,
187
(
2002
).
29.
K.
Buckingham-Meyer
,
D. M.
Goeres
, and
M. A.
Hamilton
,
J. Microbiol. Methods
70
,
236
(
2007
).
30.
A. L.
Spoering
and
K.
Lewis
,
J. Bacteriol.
183
,
6746
(
2001
).
31.
P. N.
Coneski
and
M. H.
Schoenfisch
,
Chem. Soc. Rev.
41
,
3753
(
2012
).
32.
K. P.
Dobmeier
and
M. H.
Schoenfisch
,
Biomacromolecules
5
,
2493
(
2004
).
33.
E. M.
Hetrick
and
M. H.
Schoenfisch
,
Biomaterials
28
,
1948
(
2007
).
34.
N.
Barraud
,
D. J.
Hassett
,
S.
Hwang
,
S. A.
Rice
,
S.
Kjelleberg
, and
J. S.
Webb
,
J. Bacteriol.
188
,
7344
(
2006
).
35.
T. W.
Hart
,
Tetrahedron Lett.
26
,
2013
(
1985
).
36.
V. B.
Damodaran
,
J. M.
Joslin
,
K. A.
Wold
,
S. M.
Lantvit
, and
M. M.
Reynolds
,
J. Mater. Chem.
22
,
5990
(
2012
).
37.
Promega Corporation
,
Cell Titer-Blue Cell Viability Assay
(
Promega Corporation
,
Madison, WI
,
2013
).
38.
H.
Ceri
,
M. E.
Olson
,
C.
Stremick
,
R. R.
Read
,
D.
Morck
, and
A.
Buret
,
J. Clin. Microbiol.
37
,
1771
(
1999
).
39.
M. A.
Hamilton
,
The Log Reduction (LR) Measure of Disinfectant Efficacy
(
MSU Center for Biofilm Engineering
,
Bozeman
,
2010
).
40.
A. R.
Butler
and
P.
Rhodes
,
Anal. Biochem.
249
,
1
(
1997
).
41.
P. G.
Wang
,
M.
Xian
,
X.
Tang
,
X.
Wu
,
Z.
Wen
,
T.
Cai
, and
A. J.
Janczuk
,
Chem. Rev.
102
,
1091
(
2002
).
42.
D. L. H.
Williams
,
Acc. Chem. Res.
32
,
869
(
1999
).
43.
A. W.
Carpenter
and
M. H.
Schoenfisch
,
Chem. Soc. Rev.
41
,
3742
(
2012
).
44.
J. O.
Kim
,
J.
Noh
,
R. K.
Thapa
,
N.
Hasan
,
M.
Choi
,
J. H.
Kim
,
J.
Lee
,
S. K.
Ku
, and
J.
Yoo
,
Int. J. Biol. Macromol.
79
,
217
(
2015
).
45.
Y.
Lu
,
A.
Shah
,
R. A.
Hunter
,
R. J.
Soto
, and
M. H.
Schoenfisch
,
Acta Biomater.
12
,
62
(
2015
).
46.
A.
Pegalajar-Jurado
,
K. A.
Wold
,
J. M.
Joslin
,
B. H.
Neufeld
,
K. A.
Arabea
,
L. A.
Suazo
,
S. L.
McDaniel
,
R. A.
Bowen
, and
M. M.
Reynolds
,
J. Controlled Release
217
,
228
(
2015
).
47.
L. A.
Ridnour
,
D. D.
Thomas
,
D.
Mancardi
,
M. G.
Espey
,
K. M.
Miranda
,
N.
Paolocci
,
M.
Feelisch
,
J.
Fukuto
, and
D. A.
Wink
,
Biol. Chem.
385
,
1
(
2004
).
48.
H.
Shah
,
W.
Bosch
,
K. M.
Thompson
, and
W. C.
Hellinger
,
Neurohospitalist
3
,
144
(
2013
).
49.
B. V.
Worley
,
K. M.
Schilly
, and
M. H.
Schoenfisch
,
Mol. Pharm.
12
,
1573
(
2015
).
50.
A.
Fontijn
,
A. J.
Sabadell
, and
R. J.
Ronco
,
Anal. Chem.
42
,
575
(
1970
).
51.
J. L.
Harding
and
M. M.
Reynolds
,
Anal. Chem.
86
,
2025
(
2014
).
52.
J. M.
Joslin
,
S. M.
Lantvit
, and
M. M.
Reynolds
,
ACS Appl. Mater. Interfaces
5
,
9285
(
2013
).
53.
J. M.
Joslin
and
M. M.
Reynolds
,
ACS Appl. Mater. Interfaces
4
,
1126
(
2012
).
You do not currently have access to this content.