Unmodified gelatin (uG) is widely used as a coating material in cell culture for improving surface properties. In this study, the authors investigated if gelatin methacrylamide (GM) with a medium degree of methacrylamide modification (GM1.5) and a high degree of methacrylamide modification (GM4) are equally suitable for this purpose. Therefore, gold surfaces were coated with uG, GM1.5, and GM4 by adsorption of the polymers on the surfaces. Coating success was confirmed by spectroscopic ellipsometry, contact angle measurements, surface plasmon resonance spectroscopy (SPRS), and atomic force microscopy (AFM). The authors found that upon adsorption of uG, GM1.5, a nd GM4 on gold, thin films with thicknesses of 2.95 nm, 2.50 nm, and 2.26 nm were formed. The coated surfaces showed advancing contact angles of 46° (uG and GM1.5) and 52° (GM4) without alteration of the surface roughness determined by AFM. Protein adsorption taking place on the coated surfaces was measured during contact of the surfaces with fetal calf serum by SPRS. Protein adsorption on the coated surfaces was reduced by the factor of 6.4 (uG), 5.4 (GM1.5), and 4.6 (GM4) compared to gold surfaces. Human fibroblasts cultured on the surfaces showed excellent viability shown by water soluble tetrazolium salt assay as well as live/dead staining with propidium iodide and fluorescein diacetate. No cytotoxic effects of the GM coated surfaces were observed, giving rise to the conclusion that GMs are suitable materials as coatings in cell culture.

1.
Y.
Xu
,
M.
Takai
, and
K.
Ishihara
,
Biomaterials
30
,
4930
(
2009
).
2.
C. K.
Pandiyarajan
,
O.
Prucker
,
B.
Zieger
, and
J.
Rühe
,
Macromol. Biosci.
13
,
873
(
2013
).
3.
P. B.
van Wachem
,
C. M.
Vreriks
,
T.
Beugeling
,
J.
Feijen
,
A.
Bantjes
,
J. P.
Detmers
, and
W. G.
van Aken
,
J. Biomed. Mater. Res.
21
,
701
(
1987
).
4.
J. M.
Schakenraad
and
H. J.
Busscher
,
Colloid Surf.
42
,
331
(
1989
).
5.
I. A. M.
Relou
,
C. A.
Damen
,
D. W. J.
van der Schaft
,
G.
Groenewegen
, and
A. W.
Griffioen
,
Tissue Cell
30
,
525
(
1998
).
6.
A. M.
Schor
,
S. L.
Schor
, and
T. D.
Allen
,
J. Cell Sci.
62
,
267
(
1983
).
7.
J.
You
,
A.
Yoshida
,
J. S.
Heo
,
H.-S.
Kim
,
H. O.
Kim
,
K.
Tamada
, and
E.
Kim
,
Phys. Chem. Chem. Phys.
13
,
17625
(
2011
).
8.
Y.
Lin
,
X.
Chen
,
X.
Jing
,
Y.
Jiang
, and
Z.
Su
,
J. Appl. Polym. Sci.
109
,
530
(
2008
).
9.
Y. N.
Sergeeva
,
T.
Huang
,
O.
Felix
,
L.
Jung
,
P.
Tropel
,
S.
Viville
, and
G.
Decher
,
Biointerphases
11
,
019009
(
2016
).
10.
J. M.
Seeger
and
N.
Klingman
,
J. Surg. Res.
38
,
641
(
1985
).
11.
W.
Jianhua
,
I.
Toshio
,
O.
Naoto
,
I.
Takayasu
,
M.
Takashi
,
L.
Baolin
, and
Y.
Masao
,
Biomed. Mater.
4
,
045002
(
2009
).
12.
C.
Cornelissen
,
M.
Dietrich
,
K.
Gromann
,
J.
Frese
,
S.
Krueger
,
J.
Sachweh
, and
S.
Jockenhoevel
,
Biomed. Eng. Online
12
,
7
(
2013
).
13.
L. E.
Fitzpatrick
and
T. C.
McDevitt
,
Biomater. Sci.
3
,
12
(
2015
).
14.
J.
Ao
and
B.
Li
,
Food Sci. Technol. Int.
18
,
425
(
2012
).
15.
P.
Dubruel
,
R.
Unger
,
S.
Van Vlierberghe
,
V.
Cnudde
,
P. J. S.
Jacobs
,
E.
Schacht
, and
C. J.
Kirkpatrick
,
Biomacromolecules
8
,
338
(
2007
).
16.
P.
Sajkiewicz
and
D.
Kołbuk
,
J. Biomater. Sci., Polym. Ed.
25
,
2009
(
2014
).
17.
S. A.
Klotz
and
R. L.
Smith
,
Microbiology
141
,
2681
(
1995
).
18.
Z. A.
Nur Hanani
,
Y. H.
Roos
, and
J. P.
Kerry
,
Int. J. Biol. Macromol.
71
,
94
(
2014
).
19.
E.
Hoch
,
C.
Schuh
,
T.
Hirth
,
G. E. M.
Tovar
, and
K.
Borchers
,
J. Mater. Sci.: Mater. Med.
23
,
2607
(
2012
).
20.
R.
Chandra
and
R.
Rustgi
,
Prog. Polym. Sci.
23
,
1273
(
1998
).
21.
K.
Su
and
C.
Wang
,
Biotechnol. Lett.
37
,
2139
(
2015
).
22.
M.
Santoro
,
A. M.
Tatara
, and
A. G.
Mikos
,
J. Controlled Release
190
,
210
(
2014
).
23.
S.
Young
,
M.
Wong
,
Y.
Tabata
, and
A. G.
Mikos
,
J. Controlled Release
109
,
256
(
2005
).
24.
E.
Hoch
,
G. E. M.
Tovar
, and
K.
Borchers
,
Eur. J. Cardio-Thorac.
46
,
767
(
2014
).
25.
J.
Rose
,
S.
Pacelli
,
A.
Haj
,
H.
Dua
,
A.
Hopkinson
,
L.
White
, and
F.
Rose
,
Materials
7
,
3106
(
2014
).
26.
E.
Hoch
,
T.
Hirth
,
G. E. M.
Tovar
, and
K.
Borchers
,
J. Mater. Chem. B
1
,
5675
(
2013
).
27.
X.
Zhang
,
M. D.
Do
,
P.
Casey
,
A.
Sulistio
,
G. G.
Qiao
,
L.
Lundin
,
P.
Lillford
, and
S.
Kosaraju
,
J. Agric. Food Chem.
58
,
6809
(
2010
).
28.
J. W.
Nichol
,
S. T.
Koshy
,
H.
Bae
,
C. M.
Hwang
,
S.
Yamanlar
, and
A.
Khademhosseini
,
Biomaterials
31
,
5536
(
2010
).
29.
J.
Ramon-Azcon
 et al,
Lab Chip
12
,
2959
(
2012
).
30.
E. B.
Luiz
 et al,
Biofabrication
6
,
024105
(
2014
).
31.
N.
Reddy
,
R.
Reddy
, and
Q.
Jiang
,
Trends Biotechnol.
33
,
362
(
2015
).
32.
T.
Billiet
,
B. V.
Gasse
,
E.
Gevaert
,
M.
Cornelissen
,
J. C.
Martins
, and
P.
Dubruel
,
Macromol. Biosci.
13
,
1531
(
2013
).
33.
X.
Zhao
 et al,
Adv. Healthcare Mater.
5
,
108
(
2016
).
34.
W.
Zongjie
,
A.
Raafa
,
P.
Benjamin
,
S.
Roya
,
G.
Sanjoy
, and
K.
Keekyoung
,
Biofabrication
7
,
045009
(
2015
).
35.
J. N.
Adkins
,
S. M.
Varnum
,
K. J.
Auberry
,
R. J.
Moore
,
N. H.
Angell
,
R. D.
Smith
,
D. L.
Springer
, and
J. G.
Pounds
,
Mol. Cell Proteomics
1
,
947
(
2002
).
36.
S. M. S.
Schönwälder
 et al,
Biomacromolecules
15
,
2398
(
2014
).
37.
S.
Gorgieva
,
J.
Štrancar
, and
V.
Kokol
,
J. Biomed. Mater. Res. A
102
,
3986
(
2014
).
38.
S.
Van Vlierberghe
,
E.
Vanderleyden
,
P.
Dubruel
,
F.
De Vos
, and
E.
Schacht
,
Macromol. Biosci.
9
,
1105
(
2009
).
39.
G.
Tan
,
Y.
Tan
,
C.
Ning
,
L.
Zhang
,
L.
Zhou
, and
H.
Wang
,
Adv. Mater. Res.
936
,
663
(
2014
).
40.
M.
Hoelzl
,
A.
Tinazli
,
C.
Leitner
,
C. D.
Hahn
,
B.
Lackner
,
R.
Tampe
, and
H. J.
Gruber
,
Langmuir
23
,
5571
(
2007
).
41.
P. J.
Kluger
,
R.
Wyrwa
,
J.
Weisser
,
J.
Maierle
,
M.
Votteler
,
C.
Rode
,
M.
Schnabelrauch
,
H.
Walles
, and
K.
Schenke-Layland
,
J. Mater. Sci.
21
,
2665
(
2010
).
42.
S.
Suarasan
,
M.
Focsan
,
D.
Maniu
, and
S.
Astilean
,
Colloids Surf. B
103
,
475
(
2013
).
43.
K. P.
Fears
,
T. D.
Clark
, and
D. Y.
Petrovykh
,
J. Am. Chem. Soc.
135
,
15040
(
2013
).
44.
R.
Schrieber
and
H.
Gareis
,
Gelatine Handbook–Theory and Industrial Practice
(
Wiley-VCH
,
Weinheim, Germany
,
2007
).
45.
B.-K.
Pong
,
J.-Y.
Lee
, and
B. L.
Trout
,
Langmuir
21
,
11599
(
2005
).
46.
H.
Ai
,
Y.
Lvov
,
D.
Mills
,
M.
Jennings
,
J.
Alexander
, and
S.
Jones
,
Cell. Biochem. Biophys.
38
,
103
(
2003
).
47.
C. E. A.
Jochems
,
J. B. F.
van der Valk
,
F. R.
Stafleu
, and
V.
Baumans
,
Altern. Lab. Anim.
30
,
219
(
2002
).
48.
P.
Price
and
E.
Gregory
,
In Vitro Cell. Dev. Biol.-Plant
18
,
576
(
1982
).
49.
E. G.
Hayman
and
E.
Ruoslahti
,
J. Cell. Biol.
83
,
255
(
1979
).
50.
J.
Oehlke
,
A.
Ehrlich
,
E.
Krause
,
S.
Pritz
,
B.
Wiesner
, and
M.
Beyermann
,
Nucleic Acid Ther.
21
,
285
(
2011
).
51.
K.
Kataoka
,
H.
Taira
,
A.
Kikuchi
,
T.
Tsuruta
, and
M.
Hayashi
,
Heart Replacement
, edited by
T.
Akutsu
and
H.
Koyanagi
(
Springer
,
Tokyo
,
Japan
,
1996
), pp.
29
35
.
52.
E.
Engvall
and
E.
Ruoslahti
,
Int. J. Cancer
20
,
1
(
1977
).
53.
B.
Tian
,
K.
Lessan
,
J.
Kahm
,
J.
Kleidon
, and
C.
Henke
,
J. Biol. Chem.
277
,
24667
(
2002
).
54.
M. A.
Schwartz
and
R. K.
Assoian
,
J. Cell Sci.
114
,
2553
(
2001
).
55.
N.
Faucheux
,
R.
Schweiss
,
K.
Lützow
,
C.
Werner
, and
T.
Groth
,
Biomaterials
25
,
2721
(
2004
).
56.
See supplementary material at http://dx.doi.org/10.1116/1.4949545 for NMR spectra, ellipsometry data, SPRS data and cell culture images.

Supplementary Material

You do not currently have access to this content.