Not only bacteria but also fungal pathogens, particularly Candida species, can lead to biofilm infections on biomedical devices. By covalent grafting of the antifungal drug caspofungin, which targets the fungal cell wall, onto solid biomaterials, a surface layer can be created that might be able to provide long-term protection against fungal biofilm formation. Plasma polymerization of propionaldehyde (propanal) was used to deposit a thin (∼20 nm) interfacial bonding layer bearing aldehyde surface groups that can react with amine groups of caspofungin to form covalent interfacial bonds for immobilization. Surface analyses by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the intended grafting and uniformity of the coatings, and durability upon extended washing. Testing for fungal cell attachment and ensuing biofilm formation showed that caspofungin retained activity when covalently bound onto surfaces, disrupting colonizing Candida cells. Mammalian cytotoxicity studies using human primary fibroblasts indicated that the caspofungin-grafted surfaces were selective in eliminating fungal cells while allowing attachment and spreading of mammalian cells. These in vitro data suggest promise for use as antifungal coatings, for example, on catheters, and the use of a plasma polymer interlayer enables facile transfer of the coating method onto a wide variety of biomaterials and biomedical devices.

1.
T. F.
Moriarty
,
S. A.
Zaat
, and
H. J.
Busscher
,
Biomaterials Associated Infection: Immunological Aspects and Antimicrobial Strategies
(
Springer Science & Business Media
,
New York
,
2012
.
2.
A. Y.
Peleg
,
D. A.
Hogan
, and
E.
Mylonakis
,
Nat. Rev. Microbiol.
8
,
340
(
2010
).
3.
H.
Chim
,
B. H.
Tan
, and
C.
Song
,
Burns
33
,
1008
(
2007
).
4.
V. D.
Rosenthal
 et al,
Ann. Intern. Med.
145
,
582
(
2006
).
5.
E. M.
Kojic
and
R. O.
Darouiche
,
Clin. Microbiol. Rev.
17
,
255
(
2004
).
6.
D.
Marriott
,
E. G.
Playford
,
Q.
Nguyen
,
S.
Chen
,
D.
Ellis
,
M.
Slavin
, and
T.
Sorrell
,
Int. J. Infect. Dis.
10
,
S77
(
2006
).
7.
D.
Marriott
,
E. G.
Playford
,
S.
Chen
,
M.
Slavin
,
Q.
Nguyen
,
D.
Ellis
, and
T. C.
Sorrell
,
Crit. Care
13
,
R115
(
2009
).
8.
A. Y.
Peleg
and
D. C.
Hooper
,
N. Engl. J. Med.
362
,
1804
(
2010
).
9.
A. I.
Hidron
,
J. R.
Edwards
,
J.
Patel
,
T. C.
Horan
,
D. M.
Sievert
,
D. A.
Pollock
, and
S. K.
Fridkin
,
Infect. Control Hosp. Epidemiol.
29
,
996
(
2008
).
10.
G. D.
Brown
,
D. W.
Denning
,
N. A.
Gow
,
S. M.
Levitz
,
M. G.
Netea
, and
T. C.
White
,
Sci. Transl. Med.
4
,
165rv113
(
2012
).
11.
L. S.
Wilson
,
C. M.
Reyes
,
M.
Stolpman
,
J.
Speckman
,
K.
Allen
, and
J.
Beney
,
Value Health
5
,
26
(
2002
).
12.
K.
Vasilev
,
J.
Cook
, and
H. J.
Griesser
,
Expert Rev. Med. Devices
6
,
553
(
2009
).
13.
B. R.
Coad
,
Microbiol. Aust.
36
,
71
(
2015
).
14.
B. R.
Coad
,
S. E.
Kidd
,
D. H.
Ellis
, and
H. J.
Griesser
,
Biotechnol. Adv.
32
,
296
(
2014
).
15.
M. J.
Neal
,
Medical Pharmacology at a Glance
(
Wiley
,
New York
,
2012
).
16.
W. O.
Foye
,
T. L.
Lemke
, and
D. A.
Williams
,
Foye's Principles of Medicinal Chemistry
(
Lippincott Williams & Wilkins
,
Philadelphia
,
2008
).
17.
B. R.
Coad
,
K.
Vasilev
,
K. R.
Diener
,
J. D.
Hayball
,
R. D.
Short
, and
H. J.
Griesser
,
Langmuir
28
,
2710
(
2012
).
18.
B. R.
Coad
,
M.
Jasieniak
,
S. S.
Griesser
, and
H. J.
Griesser
,
Surf. Coat. Technol.
233
,
169
(
2013
).
19.
A. M.
Sandstrom
,
M.
Jasieniak
,
H. J.
Griesser
,
L.
Grøndahl
, and
J. J.
Cooper-White
,
Plasma Processes Polym.
10
,
19
(
2013
).
20.
D.
Briggs
,
Surface Analysis of Polymers by XPS and Static SIMS
(
Cambridge University Press
,
Cambridge
,
1998
).
21.
M.
Jasieniak
,
D.
Graham
,
P.
Kingshott
,
L.
Gamble
, and
H. J.
Griesser
,
Handbook of Surface and Interface Analysis
, 2nd ed., edited by
J. P.
Riviere
and
S.
Myhra
(
CRC Press
,
Boca Raton, FL
,
2009
), Chap. 17, pp.
529
564
.
22.
F. M.
Ausubel
,
Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology
(
Wiley
,
New York
,
2002
), Vol.
2
.
23.
S.
MacNeil
,
J.
Shepherd
, and
L.
Smith
,
3D Cell Culture
(
Springer
,
Berlin
,
2011
), pp.
129
153
.
24.
B. R.
Coad
,
T.
Scholz
,
K.
Vasilev
,
J. D.
Hayball
,
R. D.
Short
, and
H. J.
Griesser
,
ACS Appl. Mater. Interfaces
4
,
2455
(
2012
).
25.
G.
Garcia-Effron
,
D. P.
Kontoyiannis
,
R. E.
Lewis
, and
D. S.
Perlin
,
Antimicrob. Agents Chemother.
52
,
4181
(
2008
).
26.
F. C.
Bizerra
,
A. S.
Melo
,
E.
Katchburian
,
E.
Freymüller
,
A. H.
Straus
,
H. K.
Takahashi
, and
A. L.
Colombo
,
Antimicrob. Agents Chemother.
55
,
302
(
2011
).
27.
C.
Dunyach
,
P.
Drakulovski
,
S.
Bertout
,
S.
Jouvert
,
J.
Reynes
, and
M.
Mallié
,
Mycoses
54
,
e62
(
2011
).
28.
C.
Formosa
,
M.
Schiavone
,
H.
Martin-Yken
,
J.
François
,
R.
Duval
, and
E.
Dague
,
Antimicrob. Agents Chemother.
57
,
3498
(
2013
).
29.
S.
El-Kirat-Chatel
,
A.
Beaussart
,
D.
Alsteens
,
D. N.
Jackson
,
P. N.
Lipke
, and
Y. F.
Dufrene
,
Nanoscale
5
,
1105
(
2013
).
30.
V.
Letscher-Bru
and
R.
Herbrecht
,
J. Antimicrob. Chemother.
51
,
513
(
2003
).
31.
P. K.
Mukherjee
,
L.
Long
,
H. G.
Kim
, and
M. A.
Ghannoum
,
Int. J. Antimicrob. Agents
33
,
149
(
2009
).
32.
G.
Ramage
,
J. P.
Martinez
, and
J. L.
Lopez-Ribot
,
FEMS Yeast Res.
6
,
979
(
2006
).
33.
V.
Dupres
,
Y. F.
Dufrene
, and
J. J.
Heinisch
,
ACS Nano
4
,
5498
(
2010
).
34.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology Cell
(
Garland Science
,
New York
,
2008
), Chap. 10, pp.
617
650
.
You do not currently have access to this content.