Control over bacterial attachment and proliferation onto nanofibrous materials constitutes a major challenge for a variety of applications, including filtration membranes, protective clothing, wound dressings, and tissue engineering scaffolds. To develop effective devices, the interactions that occur between bacteria and nanofibers with different morphological and physicochemical properties need to be investigated. This paper explores the influence of fiber surface chemistry on bacterial behavior. Different chemical functionalities were generated on the surface of electrospun polystyrene nanofibers through plasma polymerization of four monomers (acrylic acid, allylamine, 1,7-octadiene, and 1,8-cineole). The interactions of Escherichia coli with the surface modified fibers were investigated through a combination of scanning electron microscopy and confocal laser scanning microscopy. Fiber wettability, surface charge, and chemistry were found to affect the ability of bacterial cells to attach and proliferate throughout the nanofiber meshes. The highest proportion of viable cells attachment occurred on the hydrophilic amine rich coating, followed by the hydrophobic octadiene. The acrylic acid coating rich in carboxyl groups showed a significantly lower attraction of bacterial cells. The 1,8-cineole retained the antibacterial activity of the monomer, resulting with a high proportion of dead isolated cells attached onto the fibers. Results showed that the surface chemistry properties of nanofibrous membranes can be strategically tuned to control bacterial behavior.

1.
T.
Subbiah
,
G. S.
Bhat
,
R. W.
Tock
,
S.
Parameswaran
, and
S. S.
Ramkumar
,
J. Appl. Polym. Sci.
96
,
557
(
2005
).
2.
M.
Abrigo
,
S. L.
McArthur
, and
P.
Kingshott
,
Macromol. Biosci.
14
,
772
(
2014
).
3.
R.
Barhate
and
S.
Ramakrishna
,
J. Membr. Sci.
296
,
1
(
2007
).
4.
N. L.
Lala
,
R.
Ramaseshan
,
L.
Bojun
,
S.
Sundarrajan
,
R.
Barhate
,
L.
Ying-jun
, and
S.
Ramakrishna
,
Biotechnol. Bioeng.
97
,
1357
(
2007
).
5.
S.
Nasreen
,
S.
Sundarrajan
,
S.
Nizar
,
R.
Balamurugan
, and
S.
Ramakrishna
,
Membranes
3
,
266
(
2013
).
6.
M.
Botes
and
T.
Eugene Cloete
,
Crit. Rev. Microbiol.
36
,
68
(
2010
).
7.
H.
Ma
,
C.
Burger
,
B.
Hsiao
, and
B.
Chu
,
J. Mater. Chem.
21
,
7507
(
2011
).
8.
H. L.
Schreuder-Gibson
,
Q.
Truong
,
J. E.
Walker
,
J. R.
Owens
,
J. D.
Wander
, and
W. E.
Jones
,
MRS Bull.
28
,
574
(
2003
).
9.
S.
Lee
,
J. Appl. Polym. Sci.
114
,
3652
(
2009
).
10.
Q.
Pham
,
U.
Sharma
, and
A.
Mikos
,
Tissue Eng.
12
,
1197
(
2006
).
11.
Microbiology of Wounds
, edited by
S.
Percival
and
K.
Cutting
(
CRC
,
Hoboken, NJ
,
2010
).
12.
Y.
Zhang
,
C.
Lim
,
S.
Ramakrishna
, and
Z.-M.
Huang
,
J. Mater. Sci. Mater. Med.
16
,
933
(
2005
).
13.
Z.
Zhao
,
J.
Zheng
,
M.
Wang
,
H.
Zhang
, and
C. C.
Han
,
J. Membr. Sci.
394-395
,
209
(
2012
).
14.
R.
Jayakumar
,
M.
Prabaharan
,
S.
Nair
, and
H.
Tamura
,
Biotechnol. Adv.
28
,
142
(
2010
).
15.
A.
Cooper
,
R.
Oldinski
,
H.
Ma
,
J. D.
Bryers
, and
M.
Zhang
,
Carbohydr. Polym.
92
,
254
(
2013
).
16.
C.-H.
Xue
,
J.
Chen
,
W.
Yin
,
S.-T.
Jia
, and
J.-Z.
Ma
,
Appl. Surf. Sci.
258
,
2468
(
2012
).
17.
Q. F.
Wei
,
H.
Ye
,
D. Y.
Hou
,
H. B.
Wang
, and
W. D.
Gao
,
J. Appl. Polym. Sci.
99
,
2384
(
2006
).
18.
C.
Yao
,
X.
Li
,
K.
Neoh
,
Z.
Shi
, and
E.
Kang
,
Appl. Surf. Sci.
255
,
3854
(
2009
).
19.
C.
Yao
,
X.
Li
,
K.
Neoh
,
Z.
Shi
, and
E.
Kang
,
J. Membr. Sci.
320
,
259
(
2008
).
20.
J.
Yuan
,
J.
Geng
,
Z.
Xing
,
J.
Shen
,
I.-K.
Kang
, and
H.
Byun
,
J. Appl. Polym. Sci.
116
,
668
(
2010
).
21.
M.
Abrigo
,
P.
Kingshott
, and
S. L.
McArthur
,
ACS Appl. Mater. Interfaces
7
,
7644
(
2015
).
22.
H. S.
Yoo
,
T. G.
Kim
, and
T. G.
Park
,
Adv. Drug Delivery Rev.
61
,
1033
(
2009
).
23.
N.
Mitik-Dineva
,
P. R.
Stoddart
,
R.
Crawford
, and
E. P.
Ivanova
,
Wiley Encyclopedia of Biomedical Engineering
(
Wiley
,
New York
,
2006
).
24.
X.
Qian
,
S. J.
Metallo
,
I. S.
Choi
,
H.
Wu
,
M. N.
Liang
, and
G. M.
Whitesides
,
Anal. Chem.
74
,
1805
(
2002
).
25.
E.
Ostuni
,
R. G.
Chapman
,
M. N.
Liang
,
G.
Meluleni
,
G.
Pier
,
D. E.
Ingber
, and
G. M.
Whitesides
,
Langmuir
17
,
6336
(
2001
).
26.
T. J.
Sill
and
H. A.
von Recum
,
Biomaterials
29
,
1989
(
2008
).
27.
Z.
Ademovic
,
J.
Wei
,
B.
Winther-Jensen
,
X.
Hou
, and
P.
Kingshott
,
Plasma Processes Polym.
2
,
53
(
2005
).
28.
K.
Vasilev
,
S. S.
Griesser
, and
H. J.
Griesser
,
Plasma Processes Polym.
8
,
1010
(
2011
).
29.
K.
Vasilev
,
J.
Cook
, and
H.
Griesser
,
Expert Rev. Med. Devices
6
,
553
(
2009
).
30.
K.
Vasilev
,
V.
Sah
,
R.
Goreham
,
C.
Ndi
,
R.
Short
, and
H.
Griesser
,
Nanotechnology
21
,
215102
(
2010
).
31.
C. S.
Kwok
,
T. A.
Horbett
, and
B. D.
Ratner
,
J. Controlled Release
62
,
301
(
1999
).
32.
B.
Gottenbos
,
H. C.
van der Mei
,
F.
Klatter
,
P.
Nieuwenhuis
, and
H. J.
Busscher
,
Biomaterials
23
,
1417
(
2002
).
33.
A.
Pegalajar-Jurado
,
C. D.
Easton
,
K. E.
Styan
, and
S. L.
McArthur
,
J. Mater. Chem. B
2
,
4993
(
2014
).
34.
G.
Speranza
 et al,
Biomaterials
25
,
2029
(
2004
).
35.
G.
Mishra
and
S. L.
McArthur
,
Langmuir
26
,
9645
(
2010
).
36.
T. R.
Gengenbach
and
H. J.
Griesser
,
J. Polym. Sci. A Polym. Chem.
36
,
985
(
1998
).
37.
L.
O'Toole
,
A. J.
Beck
, and
R. D.
Short
,
Macromolecules
29
,
5172
(
1996
).
38.
C.
Vilani
,
D.
Weibel
,
R.
Zamora
,
A.
Habert
, and
C.
Achete
,
Appl. Surf. Sci.
254
,
131
(
2007
).
39.
S. C.
Baker
,
N.
Atkin
,
P. A.
Gunning
,
N.
Granville
,
K.
Wilson
,
D.
Wilson
, and
J.
Southgate
,
Biomaterials
27
,
3136
(
2006
).
40.
F.
Clement
,
B.
Held
,
N.
Soulem
, and
C.
Guimon
,
EPJ Appl. Phys.
18
,
135
(
2002
).
41.
W.
Huang
,
H.
Fan
,
X.
Zhuang
, and
J.
Yu
,
Nanoscale Res. Lett.
9
,
479
(
2014
).
42.
G.
Mishra
,
C. D.
Easton
, and
S. L.
McArthur
,
Langmuir
26
,
3720
(
2010
).
43.
See supplementary material at http://dx.doi.org/10.1116/1.4927218 for the XPS survey spectra from the electrospun polymer scaffolds.
44.
M.
Salim
,
P. C.
Wright
, and
S. L.
McArthur
,
Electrophoresis
30
,
1877
(
2009
).
45.
J. D.
Whittle
,
R. D.
Short
,
C. W. I.
Douglas
, and
J.
Davies
,
Chem. Mater.
12
,
2664
(
2000
).
46.
P.
Gilbert
,
D.
Evans
,
E.
Evans
,
I.
Duguid
, and
M.
Brown
,
J. Appl. Bacteriol.
71
,
72
(
1991
).
47.
N.
Cerca
,
G. B.
Pier
,
M.
Vilanova
,
R.
Oliveira
, and
J.
Azeredo
,
Res. Microbiol.
156
,
506
(
2005
).
48.
Y.-L.
Ong
,
A.
Razatos
,
G.
Georgiou
, and
M. M.
Sharma
,
Langmuir
15
,
2719
(
1999
).
49.
M.
Rosenberg
,
FEMS Microbiol. Lett.
22
,
289
(
1984
).
50.
M.
van Loosdrecht
and
A.
Zehnder
,
Experientia
46
,
817
(
1990
).
51.
R. J.
Doyle
,
Microbes Infect.
2
,
391
(
2000
).
52.
H. E.
Colley
,
G.
Mishra
,
A. M.
Scutt
, and
S. L.
McArthur
,
Plasma Processes Polym.
6
,
831
(
2009
).
53.
M. S.
Kang
,
B.
Chun
, and
S. S.
Kim
,
J. Appl. Polym. Sci.
81
,
1555
(
2001
).
54.
W.-B.
Tsai
,
J.
Grunkemeier
, and
T.
Horbett
,
J. Biomed. Mater. Res.
44
,
130
(
1999
).
55.
B.
Gottenbos
,
D. W.
Grijpma
,
H. C.
van der Mei
,
J.
Feijen
, and
H. J.
Busscher
,
J. Antimicrob. Chemother.
48
,
7
(
2001
).
56.
I.
Pashkuleva
,
A.
Marques
,
F.
Vaz
, and
R.
Reis
,
J. Mater. Sci.-Mater. Med.
16
,
81
(
2005
).

Supplementary Material

You do not currently have access to this content.