We explore the relation between a classical periodic Hamiltonian system and an associated discrete quantum system on a torus in phase space. The model is a sinusoidally perturbed Harper model and is similar to the sinusoidally perturbed pendulum. Separatrices connecting hyperbolic fixed points in the unperturbed classical system become chaotic under sinusoidal perturbation. We numerically compute eigenstates of the Floquet propagator for the associated quantum system. For each Floquet eigenstate, we compute a Husimi distribution in phase space and an energy and energy dispersion from the expectation value of the unperturbed Hamiltonian operator. The Husimi distribution of each Floquet eigenstate resembles a classical orbit with a similar energy and similar energy dispersion. Chaotic orbits in the mixed classical system are related to Floquet eigenstates that appear ergodic. For a mixed regular and chaotic system, the energy dispersion can separate the Floquet eigenstates into ergodic and integrable subspaces. The width of a chaotic region in the classical system is estimated by integrating the perturbation along a separatrix orbit. We derive a related expression for the associated quantum system from the averaged perturbation in the interaction representation evaluated at states with energy close to the separatrix.

1.
Albash
,
T.
and
Lidar
,
D. A.
,
Rev. Mod. Phys.
90
,
015002
(
2018
).
2.
Appleby
,
D. M.
,
J. Math. Phys.
46
,
052107
(
2005
).
3.
Arnal
,
M.
,
Chatelain
,
G.
,
Martinez
,
M.
,
Dupont
,
N.
,
Giraud
,
O.
,
Ullmo
,
D.
,
Georgeot
,
B.
,
Lemarié
,
G.
,
Billy
,
J.
et al,
Sci. Adv.
6
,
eabc4886
(
2020
).
4.
Bäcker
,
A.
,
Ketzmerick
,
R.
,
Löck
,
S.
, and
Mertig
,
N.
,
Phys. Rev. Lett.
106
,
024101
(
2011
).
5.
Balazs
,
N. L.
and
Voros
,
A.
,
Ann. Phys.
190
,
1
(
1989
).
6.
Berry
,
M. V.
,
Proc. R. Soc. London, Ser. A
423
,
219
(
1989
).
7.
Berry
,
M. V.
and
Robnik
,
M.
,
J. Phys. A: Math. Gen.
17
,
2413
(
1984
).
8.
Berry
,
M. V.
and
Tabor
,
M.
,
Proc. R. Soc. London, Ser. A
356
,
375
(
1977
).
9.
Björk
,
G.
,
Klimov
,
A. B.
, and
Sánchez-Soto
,
L. L.
,
Prog. Opt.
51
,
469
(
2008
).
10.
Blanes
,
S.
,
Casas
,
F.
,
Oteo
,
J.
, and
Ros
,
J.
,
Phys. Rep.
470
,
151
(
2009
).
11.
Bohigas
,
O.
,
Giannoni
,
M. J.
, and
Schmit
,
C.
,
Phys. Rev. Lett.
52
,
1
(
1984
).
12.
Brinkmann
,
A.
,
Concepts Magn. Reson.
45A
,
e21414
(
2016
).
13.
Brody
,
T. A.
,
Flores
,
J.
,
French
,
J. B.
,
Mello
,
P. A.
,
Pandey
,
A.
, and
Wong
,
S. S. M.
,
Rev. Mod. Phys.
53
,
385
(
1981
).
14.
Bubner
,
N.
and
Graham
,
R.
,
Phys. Rev. A
43
,
1783
(
1991
).
15.
Campbell
,
J. E.
,
Proc. London Math. Soci.
28
,
381
(
1897
).
17.
Casati
,
G.
,
Chirikov
,
B. V.
,
Izraelev
,
F. M.
, and
Ford
,
J.
, “
Stochastic behavior of a quantum pendulum under a periodic perturbation
,” in
Stochastic Behavior in Classical and Quantum Hamiltonian Systems
, edited by
Casati
,
G.
and
Ford
,
J.
(
Springer
,
1979
), Vol.
93
, pp.
334
352
.
18.
Chen
,
Y. H.
,
Kalev
,
A.
, and
Hen
,
I.
,
PRX Quantum
2
,
030342
(
2021
).
20.
Chirikov
,
B. V.
,
Izrailev
,
F. M.
, and
Shepelyansky
,
D. L.
,
Physica D
33
,
77
(
1988
).
21.
22.
Cohen
,
J.
,
Petrescu
,
A.
,
Shillito
,
R.
, and
Blais
,
A.
,
PRX Quantum
4
,
020312
(
2023
).
23.
Farhi
,
E.
,
Goldstone
,
J.
,
Gutmann
,
S.
, and
Sipser
,
M.
, “
Quantum computation by adiabatic evolution
,” arXiv:quant-ph/0001106 (
2000
).
24.
Fishman
,
S.
,
Grempel
,
D. R.
, and
Prange
,
R. E.
,
Phys. Rev. Lett.
49
,
509
(
1982
).
25.
Galetti
,
D.
and
Marchiolli
,
M. A.
,
Ann. Phys.
249
,
454
(
1996
).
26.
Grifoni
,
M.
and
Hänggi
,
P.
,
Phys. Rep.
304
,
229
(
1998
).
27.
Haake
,
F.
,
Quantum Signatures of Chaos
(
Springer Berlin Heidelberg
,
2010
).
28.
Hadden
,
S.
and
Lithwick
,
Y.
,
Astron. J.
156
,
95
(
2018
).
29.
Harper
,
P. G.
,
Proc. Phys. Soc., Sect. A
68
,
874
(
1955
).
30.
Hatano
,
N.
and
Suzuki
,
M.
, “
Finding exponential product formulas of higher orders
,” in,
Lecture Notes in Physics
, edited by
Das
,
A.
and
Chakrabarti
,
B. K.
(
Berlin Springer Verlag
,
2005
), Vol.
679
, p.
37
.
31.
Heller
,
E. J.
,
Phys. Rev. Lett.
53
,
1515
(
1984
).
32.
Iomin
,
A.
,
Fishman
,
S.
, and
Zaslavsky
,
G. M.
,
Phys. Rev. E
67
,
046210
(
2003
).
33.
34.
Izrailev
,
F. M.
,
J. Phys. A: Math. Gen.
22
,
865
(
1989
).
35.
Kurlberg
,
P.
and
Rudnick
,
Z.
,
Commun. Math. Phys.
222
,
201
(
2001
).
36.
Kuwahara
,
T.
,
Mori
,
T.
, and
Saito
,
K.
,
Ann. Phys.
367
,
96
(
2016
)., arXiv:1508.05797.
37.
Le
,
C. M.
,
Akashi
,
R.
, and
Tsuneyuki
,
S.
,
Phys. Rev. A
102
,
042212
(
2020
).
40.
Lévi
,
B.
and
Georgeot
,
B.
,
Phys. Rev. Lett.
70
,
056218
(
2004
).
41.
Lichtenberg
,
A. J.
and
Lieberman
,
M. A.
,
Regular and Chaotic Dynamics
, Volume 38 of Applied Mathematical Sciences, 2nd ed. (
Springer-Verlag
,
1992
).
42.
Low
,
G. H.
and
Wiebe
,
N.
, “
Hamiltonian simulation in the interaction picture
,” arXiv:1805.00675 (
2018
).
43.
Magnus
,
W.
,
Commun. Pure Appl. Math.
7
,
649
(
1954
).
44.
Mardling
,
R. A.
, “
Resonance chaos and stability: The three-body problem in astrophysics
,” in
The Cambridge N-Body Lectures
, Volume 760 of Lecture Notes in Physics, edited by
Aarseth
,
S. J.
,
Tout
,
C. A.
, and
Mardling
,
R. A.
(
Springer Dordrecht
,
2008
), pp.
59
96
.
45.
Melnikov
,
V. K.
, “
On the stability of the center for time periodic perturbations
,” in
Transactions of the Moscow Mathematical Society
(
Moscow Mathematical Society
,
1963
), Vol. 12, pp. 1–57.
46.
Neufeld
,
O.
,
Podolsky
,
D.
, and
Cohen
,
O.
,
Nat. Commun.
10
,
405
(
2019
).
47.
Parlett
,
B. N.
, “
The symmetric eigenvalue problem
,” in
SIAM's Classics in Applied Mathematics
(
Society for Industrial and Applied Mathematics
,
1998
).
48.
Petit
,
A. C.
,
Pichierri
,
G.
,
Davies
,
M. B.
, and
Johansen
,
A.
,
Astron. Astrophys.
641
,
A176
(
2020
).
49.
Quillen
,
A. C.
,
Mon. Not. R. Astron. Soc.
418
,
1043
(
2011
).
50.
Rivas
,
A. M. F.
and
Ozorio de Almeida
,
A. M.
,
Ann. Phys.
276
,
223
(
1999
).
51.
Rivas
,
A. M. F.
and
Ozorio de Almeida
,
A. M.
,
Nonlinearity
15
,
681
(
2002
).
52.
Rodriguez-Vega
,
M.
,
Lentz
,
M.
, and
Seradjeh
,
B.
,
New J. Phys.
20
,
093022
(
2018
).
53.
Rudner
,
M. S.
and
Lindner
,
N. H.
, “
The Floquet Engineer's Handbook
,” arXiv:2003.08252 (
2020
).
54.
Santhanam
,
M. S.
,
Sheorey
,
V. B.
, and
Lakshminarayan
,
A.
,
Phys. Rev. E
57
,
345
(
1998
).
56.
Scharf
,
R.
and
Sundaram
,
B.
,
Phys. Rev. A
45
,
3615
(
1992
).
57.
Schwinger
,
J.
,
Proc. Natl. Acad. Sci. U. S. A.
46
,
570
(
1960
).
58.
Shevchenko
,
I. I.
,
J. Exp. Theor. Phys.
91
,
615
(
2000
).
59.
60.
Shevchenko
,
I. I.
,
Phys. Rev. E
85
,
066202
(
2012
).
61.
Shnirel'man
,
A. I.
, “
Ergodic properties of eigenfunctions
,”
Russ. Math. Surv.
29
,
181
(
1974
).
63.
Soskin
,
S. M.
and
Mannella
,
R.
,
Phys. Rev. E
80
,
066212
(
2009
).
64.
Soskin
,
S. M.
,
Mannella
,
R.
, and
Yevtushenko
,
O. M.
,
Phys. Rev. E
77
,
036221
(
2008
).
65.
Strohmer
,
T.
and
Wertz
,
T.
,
Almost Eigenvalues and Eigenvectors of Almost Mathieu Operators
, Volume 6 of Applied and Numerical Harmonic Analysis (
Springer International Publishing
,
2021
), pp.
77
96
.
67.
Treschev
,
D.
and
Zubelevich
,
O.
,
The Separatrix Map
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2010
), Chap. 4, pp.
75
92
.
68.
Vleck
,
J. H. V.
,
Proc. Natl. Acad. Sci. U. S. A.
14
,
178
(
1928
).
69.
Wang
,
Q.
and
Robnik
,
M.
,
Phys. Rev. E
107
,
054213
(
2023
).
70.
Wei
,
D.
and
Arovas
,
D. P.
,
Phys. Lett. A
158
,
469
(
1991
).
71.
Wisdom
,
J.
,
Peale
,
S. J.
, and
Mignard
,
F.
,
Icarus
58
,
137
(
1984
).
73.
74.
Yampolsky
,
D.
,
Harshman
,
N.
,
Dunjko
,
V.
,
Hwang
,
Z.
, and
Olshanii
,
M.
,
SciPost Phys.
12
,
035
(
2022
).
76.
Zaslavsky
,
G.
and
Filonenko
,
N.
,
Zh. Eksp. Teor. Fiz
54
,
1590
(
1968
).
77.
Quillen
,
A. C.
(
2025
). “Qperio—Classical and quantum analogs of the periodically perturbed Harper model,”
GitHub
. https://github.com/aquillen/Qperio
You do not currently have access to this content.