Although quantum computing holds promise to accelerate a wide range of computational tasks, the quantum simulation of quantum dynamics as originally envisaged by Feynman remains the most promising candidate for achieving quantum advantage. A less explored possibility with comparably far-reaching technological applicability is the quantum simulation of classical nonlinear dynamics. Attempts to develop digital quantum algorithms based on the Koopman–von Neumann (KvN) formalism have met with challenges because of the necessary projection step from an infinite-dimensional Hilbert space to the finite-dimensional subspace described by a collection of qubits. This finitization produces numerical artifacts that limit solutions to very short time horizons. In this paper, we review continuous-variable quantum computing (CVQC), which naturally avoids such obstacles, and a CVQC algorithm for KvN simulation of classical nonlinear dynamics is advocated. In particular, we present explicit gate synthesis for product-formula Hamiltonian simulation of anharmonic vibrational dynamics.

1.
S.
De
,
E.
Corona
,
P.
Jayakumar
, and
S.
Veerapaneni
, “
Scalable solvers for cone complementarity problems in frictional multibody dynamics
,” in
IEEE High Performance Extreme Computing Conference (HPEC)
(
IEEE
,
2019
), pp.
1
7
.
3.
A. J.
Daley
,
I.
Bloch
,
C.
Kokail
,
S.
Flannigan
,
N.
Pearson
,
M.
Troyer
, and
P.
Zoller
,
Nature
607
,
667
(
2022
).
4.
S.
Lloyd
and
S. L.
Braunstein
,
Phys. Rev. Lett.
82
,
1784
(
1999
).
5.
R. G.
Jha
,
F.
Ringer
,
G.
Siopsis
, and
S.
Thompson
,
Phys. Rev. A
109
,
052412
(
2024
).
6.
K.
Yeter-Aydeniz
,
E.
Moschandreou
, and
G.
Siopsis
,
Phys. Rev. A
105
,
012412
(
2022
).
7.
B. O.
Koopman
,
Proc. Natl. Acad. Sci. U. S. A.
17
,
315
(
1931
).
8.
J.
von Neumann
,
Ann. Math.
33
,
587
(
1932
).
9.
J.
von Neumann
,
Ann. Math.
33
,
789
(
1932
).
11.
Y. T.
Lin
,
R. B.
Lowrie
,
D.
Aslangil
,
Y.
Subaşı
, and
A. T.
Sornborger
, “
Koopman von Neumann mechanics and the Koopman representation: A perspective on solving nonlinear dynamical systems with quantum computers
,” arXiv:2202.02188 [quant-ph] (
2022
).
12.
A.
Barthe
,
M.
Grossi
,
J.
Tura
, and
V.
Dunjko
, “
Continuous variables quantum algorithm for solving ordinary differential equations
,” in
IEEE International Conference on Quantum Computing and Engineering (QCE)
(
IEEE
,
2023
), Vol.
2
, pp.
48
53
.
13.
T.
Kalajdzievski
, “
Exact gate decompositions for photonic quantum computers
,” Ph.D. thesis (
York University
,
2019
).
14.
T.
Kalajdzievski
and
N.
Quesada
,
Quantum
5
,
394
(
2021
).
15.
M.
Cerezo
,
G.
Verdon
,
H.-Y.
Huang
,
L.
Cincio
, and
P. J.
Coles
,
Nat. Comput. Sci.
2
,
567
(
2022
).
16.
K.
Marshall
,
R.
Pooser
,
G.
Siopsis
, and
C.
Weedbrook
,
Phys. Rev. A
91
,
032321
(
2015
).
17.
R.
Yanagimoto
,
T.
Onodera
,
E.
Ng
,
L. G.
Wright
,
P. L.
McMahon
, and
H.
Mabuchi
,
Phys. Rev. Lett.
124
,
240503
(
2020
).
18.
A. M.
Childs
,
Y.
Su
,
M. C.
Tran
,
N.
Wiebe
, and
S.
Zhu
,
Phys. Rev. X
11
,
011020
(
2021
).
19.
D.
Burgarth
,
P.
Facchi
,
A.
Hahn
,
M.
Johnsson
, and
K.
Yuasa
, “
Strong error bounds for Trotter & Strang-Splittings and their implications for quantum chemistry
,” arXiv:2312.08044 (
2023
).
20.
See Ref. 27 for the associated analysis of complexity.
21.
H.
Vahlbruch
,
M.
Mehmet
,
K.
Danzmann
, and
R.
Schnabel
,
Phys. Rev. Lett.
117
,
110801
(
2016
).
22.
M.
Otten
,
C. L.
Cortes
, and
S. K.
Gray
, “
Noise-resilient quantum dynamics using symmetry-preserving ansatzes
,” arXiv:1910.06284 (
2019
).
23.
S.-H.
Lin
,
R.
Dilip
,
A. G.
Green
,
A.
Smith
, and
F.
Pollmann
,
PRX Quantum
2
,
010342
(
2021
).
24.
N. F.
Berthusen
,
T. V.
Trevisan
,
T.
Iadecola
, and
P. P.
Orth
,
Phys. Rev. Res.
4
,
023097
(
2022
).
25.
S.
Barison
,
F.
Vicentini
, and
G.
Carleo
,
Quantum
5
,
512
(
2021
).
26.
Relaxing this assumption would lead to a conceptually similar albeit more complicated analysis involving the approximate gate decomposition techniques discussed in Ref. 14.
27.
S.
Becker
,
N.
Datta
,
L.
Lami
, and
C.
Rouzé
,
Phys. Rev. Lett.
126
,
190504
(
2021
).
28.
S.
Cochran
, see https://github.com/samcochran/cv-quantum-simulation for “
Cv-quantum simulation of classical dynamics
.”
You do not currently have access to this content.